We have already disabled common uniform elimination because it created
sequences of loads an entire uniform object, then we extract just a
single element. This caused problems in some drivers, and is just
generally slow because it loads more memory than needed.
However, there are other way to get into this situation, so I've added
a pass that looks specifically for this pattern and removes it when only
a portion of the load is used.
Fixes#1547.
This pass will look for adjacent loops that are compatible and legal to
be fused.
Loops are compatible if:
- they both have one induction variable
- they have the same upper and lower bounds
- same initial value
- same condition
- they have the same update step
- they are adjacent
- there are no break/continue in either of them
Fusion is legal if:
- fused loops do not have any dependencies with dependence distance
greater than 0 that did not exist in the original loops.
- there are no function calls in the loops (could have side-effects)
- there are no barriers in the loops
It will fuse all such loops as long as the number of registers used for
the fused loop stays under the threshold defined by
max_registers_per_loop.
Adds support for spliting loops whose register pressure exceeds a user
provided level. This pass will split a loop into two or more loops given
that the loop is a top level loop and that spliting the loop is legal.
Control flow is left intact for dead code elimination to remove.
This pass is enabled with the --loop-fission flag to spirv-opt.
Introduce a pass that does a DCE type analysis for vector elements
instead of the whole vector as a single element.
It will then rewrite instructions that are not used with something else.
For example, an instruction whose value are not used, even though it is
referenced, is replaced with an OpUndef.
For each loop in a function, the pass walks the loops from inner to outer most loop
and tries to peel loop for which a certain amount of iteration can be done before or after the loop.
To limit code growth, peeling will not happen if the growth in code size goes above a configurable threshold.
The sprir-v generated from HLSL code contain many copyies of very large
arrays. Not only are these time consumming, but they also cause
problems for drivers because they require too much space.
To work around this, we will implement an array copy propagation. Note
that we will not implement a complete array data flow analysis in order
to implement this. We will be looking for very simple cases:
1) The source must never be stored to.
2) The target must be stored to exactly once.
3) The store to the target must be a store to the entire array, and be a
copy of the entire source.
4) All loads of the target must be dominated by the store.
The hard part is keeping all of the types correct. We do not want to
have to do too large a search to update everything, which may not be
possible, do we give up if we see any instruction that might be hard to
update.
Also in types.h, the element decorations are not stored in an std::map.
This change was done so the hashing algorithm for a Struct is
consistent. With the std::unordered_map, the traversal order was
non-deterministic leading to the same type getting hashed to different
values. See |Struct::GetExtraHashWords|.
Contributes to #1416.
This patch adds a new option --time-report to spirv-opt. For each pass
executed by spirv-opt, the flag prints resource utilization for the pass
(CPU time, wall time, RSS and page faults)
This fixes issue #1378
This pass replaces the load/store elimination passes. It implements the
SSA re-writing algorithm proposed in
Simple and Efficient Construction of Static Single Assignment Form.
Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
In: Jhala R., De Bosschere K. (eds)
Compiler Construction. CC 2013.
Lecture Notes in Computer Science, vol 7791.
Springer, Berlin, Heidelberg
https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
In contrast to common eager algorithms based on dominance and dominance
frontier information, this algorithm works backwards from load operations.
When a target variable is loaded, it queries the variable's reaching
definition. If the reaching definition is unknown at the current location,
it searches backwards in the CFG, inserting Phi instructions at join points
in the CFG along the way until it finds the desired store instruction.
The algorithm avoids repeated lookups using memoization.
For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
this algorithm is proven to produce minimal SSA. That is, it inserts the
minimal number of Phi instructions required to ensure the SSA property, but
some Phi instructions may be dead
(https://en.wikipedia.org/wiki/Static_single_assignment_form).
We are seeing shaders that have multiple returns in a functions. These
functions must get inlined for legalization purposes; however, the
inliner does not know how to inline functions that have multiple
returns.
The solution we will go with it to improve the merge return pass to
handle structured control flow.
Note that the merge return pass will assume the cfg has been cleanedup
by dead branch elimination.
Fixes#857.
Strips reflection info. This is limited to decorations and
decoration instructions related to the SPV_GOOGLE_hlsl_functionality1
extension.
It will remove the OpExtension for SPV_GOOGLE_hlsl_functionality1.
It will also remove the OpExtension for SPV_GOOGLE_decorate_string
if there are no further remaining uses of OpDecorateStringGOOGLE.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1398
The default target is SPIR-V 1.3.
For example, spirv-as will generate a SPIR-V 1.3 binary by default.
Use command line option "--target-env spv1.0" if you want to make a SPIR-V
1.0 binary or validate against SPIR-V 1.0 rules.
Example:
# Generate a SPIR-V 1.0 binary instead of SPIR-V 1.3
spirv-as --target-env spv1.0 a.spvasm -o a.spv
spirv-as --target-env vulkan1.0 a.spvasm -o a.spv
# Validate as SPIR-V 1.0.
spirv-val --target-env spv1.0 a.spv
# Validate as Vulkan 1.0
spirv-val --target-env vulkan1.0 a.spv
Use indirection through latest_version_spirv.h
Also, when generating enum tables, use the unified1 JSON grammar since
it now has FragmentFullyCoveredEXT but the other JSON grammars don't.
They are starting to fall behind.
It moves all conditional branching and switch whose conditions are loop
invariant and uniform. Before performing the loop unswitch we check that
the loop does not contain any instruction that would prevent it
(barriers, group instructions etc.).
This patch adds initial support for loop unrolling in the form of a
series of utility classes which perform the unrolling. The pass can
be run with the command spirv-opt --loop-unroll. This will unroll
loops within the module which have the unroll hint set. The unroller
imposes a number of requirements on the loops it can unroll. These are
documented in the comments for the LoopUtils::CanPerformUnroll method in
loop_utils.h. Some of the restrictions will be lifted in future patches.
Implementation of the simplification pass.
- Create pass that calls the instruction folder on each instruction and
propagate instructions that fold to a copy. This will do copy
propagation as well.
- Did not use the propagator engine because I want to modify the instruction
as we go along.
- Change folding to not allocate new instructions, but make changes in
place. This change had a big impact on compile time.
- Add simplification pass to the legalization passes in place of
insert-extract elimination.
- Added test cases for new folding rules.
- Added tests for the simplification pass
- Added a method to the CFG to apply a function to the basic blocks in
reverse post order.
Contributes to #1164.
Creates a pass that will remove instructions that are invalid for the
current shader stage. For the instruction to be considered for replacement
1) The opcode must be valid for a shader modules.
2) The opcode must be invalid for the current shader stage.
3) All entry points to the module must be for the same shader stage.
4) The function containing the instruction must be reachable from an entry point.
Fixes#1247.
* Handles simple cases only
* Identifies phis in blocks with two predecessors and attempts to
convert the phi to an select
* does not perform code motion currently so the converted values must
dominate the join point (e.g. can't be defined in the branches)
* limited for now to two predecessors, but can be extended to handle
more cases
* Adding if conversion to -O and -Os
We have come across a driver bug where and OpUnreachable inside a loop
is causing the shader to go into an infinite loop. This commit will try
to avoid this bug by turning OpUnreachable instructions that are
contained in a loop into branches to the loop merge block.
This is not added to "-O" and "-Os" because it should only be used if
the driver being targeted has this problem.
Fixes#1209.
In HLSL structured buffer legalization, pointer to pointer types
are emitted to indicate a structured buffer variable should be
treated as an alias of some other variable. We need an option to
relax the check of pointer types in logical addressing mode to
catch other validation errors.
Turn `Linker::Link()` into free functions
As very little information was kept in the Linker class, we can get rid
of the whole class and have the `Link()` as free functions instead; the
environment target as well as the consumer are passed along through an
`spv_context` object.
The resulting linked_binary is passed as a pointer rather than a
reference to follow the Google C++ Style guidelines.
Addresses remaining comments from
https://github.com/KhronosGroup/SPIRV-Tools/pull/693 about the SPIR-V
linker.
Fix variable naming in the linker
Some of the variables were using mixed case, which did not follow the
Google C++ Style guidelines.
Linker: Use EXPECT_EQ when possible and update some test
* Replace occurrences of ASSERT_EQ by EXPECT_EQ when possible;
* Reformulated some of the error messages;
* Added the symbol name in the error message when there is a type or
decoration mismatch between the imported and exported declarations.
Opt: List all duplicates removed by RemoveDuplicatePass in the header
Opt: Make the const version of GetLabelInst() return a pointer
For consistency with the non-const version, as well as other similar
functions.
Opt: Rename function_end to EndInst()
As pointed out by dneto0 the previous name was quite confusing and could
be mistaken with a function returning an end iterator.
Also change the return type of the const version to a pointer rather
than a reference, for consistency.
Opt: Add performance comment to RemoveDuplicateTypes and decorations
This comment was requested during the review of
https://github.com/KhronosGroup/SPIRV-Tools/pull/693.
Opt: Add comments and fix variable naming in RemoveDuplicatePass
* Add missing comments to private functions;
* Rename variables that were using mixed case;
* Add TODO for moving AreTypesEqual out.
Linker: Remove commented out code and add TODOs
Linker: Merged together strings that were too much splitted
Implement a C++ RAII wrapper around spv_context
Adds optimizer API to write disassembly to a given output stream
before each pass, and after the last pass.
Adds spirv-opt --print-all option to write disassembly to stderr
before each pass, and after the last pass.
This implements the conditional constant propagation pass proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The main logic resides in CCPPass::VisitInstruction. Instruction that
may produce a constant value are evaluated with the constant folder. If
they produce a new constant, the instruction is considered interesting.
Otherwise, it's considered varying (for unfoldable instructions) or
just not interesting (when not enough operands have a constant value).
The other main piece of logic is in CCPPass::VisitBranch. This
evaluates the selector of the branch. When it's found to be a known
value, it computes the destination basic block and sets it. This tells
the propagator which branches to follow.
The patch required extensions to the constant manager as well. Instead
of hashing the Constant pointers, this patch changes the constant pool
to hash the contents of the Constant. This allows the lookups to be
done using the actual values of the Constant, preventing duplicate
definitions.
* changed the way duplicate types are removed to stop copying
instructions
* Reworked RemoveDuplicatesPass::AreTypesSame to use type manager and
type equality
* Reworked TypeManager memory management to store a pool of unique
pointers of types
* removed unique pointers from id map
* fixed instances where free'd memory could be accessed
Changes the set of optimizations done for legalization. While doing
this, I added documentation to explain why we want each optimization.
A new option "--legalize-hlsl" is added so the legalization passes can
be easily run from the command line.
The legalize option implies skip-validation.
When a private variable is used in a single function, it can be
converted to a function scope variable in that function. This adds a
pass that does that. The pass can be enabled using the option
`--private-to-local`.
This transformation allows other transformations to act on these
variables.
Also moved `FindPointerToType` from the inline class to the type manager.
Adds a scalar replacement pass. The pass considers all function scope
variables of composite type. If there are accesses to individual
elements (and it is legal) the pass replaces the variable with a
variable for each composite element and updates all the uses.
Added the pass to -O
Added NumUses and NumUsers to DefUseManager
Added some helper methods for the inst to block mapping in context
Added some helper methods for specific constant types
No longer generate duplicate pointer types.
* Now searches for an existing pointer of the appropriate type instead
of failing validation
* Fixed spec constant extracts
* Addressed changes for review
* Changed RunSinglePassAndMatch to be able to run validation
* current users do not enable it
Added handling of acceptable decorations.
* Decorations are also transfered where appropriate
Refactored extension checking into FeatureManager
* Context now owns a feature manager
* consciously NOT an analysis
* added some test
* fixed some minor issues related to decorates
* added some decorate related tests for scalar replacement
The option --skip-validation is added. When used it will skip the
validation step.
Also rearranged the help text to fix two options that are out of order.
Adds a pass that looks for redundant instruction in a function, and
removes them. The algorithm is a hash table based value numbering
algorithm that traverses the dominator tree.
This pass removes completely redundant instructions, not partially
redundant ones.
Creates a pass that removes redundant instructions within the same basic
block. This will be implemented using a hash based value numbering
algorithm.
Added a number of functions that check for the Vulkan descriptor types.
These are used to determine if we are variables are read-only or not.
Implemented a function to check if loads and variables are read-only.
Implemented kernel specific and shader specific versions.
A big change is that the Combinator analysis in ADCE is factored out
into the IRContext as an analysis. This was done because it is being
reused in the value number table.
Add new "short descriptor" algorithm to MARK-V codec.
Add three shader compression models:
lite - fast, poor compression
mid - balanced
max - best compression
Works with current DefUseManager infrastructure.
Added merge return to the standard opts.
Added validation to passes.
Disabled pass for shader capabilty.
NFC. This just makes sure every file is formatted following the
formatting definition in .clang-format.
Re-formatted with:
$ clang-format -i $(find source tools include -name '*.cpp')
$ clang-format -i $(find source tools include -name '*.h')
There are a number of users of spriv-opt that are hitting errors
because of stores with different types. In general, this is wrong, but,
in these cases, the types are the exact same except for decorations.
The options is "--relax-store-struct", and it can be used with the
validator or the optimizer.
We assume that if layout information is missing it is consistent. For
example if one struct has a offset of one of its members, and the other
one does not, we will still consider them as being layout compatible.
The problem will be if both struct has and offset decoration for
corresponding members, and the offset are different.
Markv codec now receives two optional callbacks:
LogConsumer for internal codec logging
DebugConsumer for testing if encoding->decoding produces the original
results.
There does not seem to be any pass that remove global variables. I
think we could use one. This pass will look specifically for global
variables that are not referenced and are not exported. Any decoration
associated with the variable will also be removed. However, this could
cause types or constants to become unreferenced. They will not be
removed. Another pass will have to be called to remove those.
- Adds a new pass CFGCleanupPass. This serves as an umbrella pass to
remove unnecessary cruft from a CFG.
- Currently, the only cleanup operation done is the removal of
unreachable basic blocks.
- Adds unit tests.
- Adds a flag to spirvopt to execute the pass (--cfg-cleanup).
- switched from C to C++
- moved MARK-V model creation from backend to frontend
- The same MARK-V model object can be used to encode/decode multiple
files
- Added MARK-V model factory (currently only one option)
- Added --validate option to spirv-markv (run validation while
encoding/decoding)
These flags are expanded to a series of spirv-opt flags with the
following semantics:
-O: expands to passes that attempt to improve the performance of the
generated code.
-Os: expands to passes that attempt to reduce the size of the generated
code.
-Oconfig=<file> expands to the sequence of passes determined by the
flags specified in the user-provided file.