Constexpr guaranteed no runtime init in addition to const semantics.
Moving all opt/ to constexpr.
Moving all compile-unit statics to anonymous namespaces to uniformize
the method used (anonymous namespace vs static has the same behavior
here AFAIK).
Signed-off-by: Nathan Gauër <brioche@google.com>
* Don't fold specialized branchs in loop unswitch
Folding branches can have a lot of special cases, and can be a little
error prone. So I only want it in one place. That will be in dead
branch elimination. I will change loop unswitching to set the branches
that were being folded to have a constant condition. Then subsequent
pass of dead branch elimination will be able to remove the code.
At the same time, I added a check that loop unswitching will not
unswitch a branch with a constant condition. It is not useful to do it
because dead branch elimination will simple fold the branch anyway.
Also it avoid an infinite loop that would other wise be introduced by my
first change.
Fixes#2203.
Loop unswitching is unswitching the conditional branch that creates the
back-edge. In the version of the loop, where the bachedge is not taken,
there is no back-edge. This is what causes the validator to complain.
The solution I will go with will be to now unswitch a condition with a
back-edge. At this time we do not now if loop unswitching is used. We do
not include it in the optimization sets provided, nor is it used in
glslang's set. When there are opportunities and no breaks from the loop,
the loop with either be a single iteration loop, or an infinite loop.
There is no performance advantage to performing loop unswitching in
either of those cases. If there is a break, maintaining structured
control flow will be tricky. Unless we see a clear advantage to handling
these case, I would go with the safer simpler solution.
Fixes#2201.
Added documentation to the ir context to indicates that TakeNextId()
returns 0 when the max id is reached. TODOs were added to each call
sight so that we know where we have to start to handle this case.
Handle id overflow in |SplitLoopHeader|.
Handle id overflow in |GetOrCreatePreHeaderBlock|.
Handle failure to create preheader in LICM.
Part of https://github.com/KhronosGroup/SPIRV-Tools/issues/1841.
Currently the IRContext is passed into the Pass::Process method. It is
then up to the individual pass to store the context into the context_
variable. This CL changes the Run method to store the context before
calling Process which no-longer receives the context as a parameter.
This CL moves the files in opt/ to consistenly be under the opt::
namespace. This frees up the ir:: namespace so it can be used to make a
shared ir represenation.
We replace the std::vector in the Operand class by a new class that does
a small size optimization. This helps improve compile time on Windows.
Tested on three sets of shaders. Trying various values for the small
vector. The optimal value for the operand class was 2. However, for
the Instruction class, using an std::vector was optimal. Size of "0"
means that an std::vector was used.
Instruction size
0 4 8
Operand Size
0 489 544 684
1 593 487
2 469 570
4 473
8 505
This is a single thread run of ~120 shaders. For the multithreaded run
the results were the similar. The basline time was ~62sec. The
optimal configuration was an 2 for the OperandData and an
std::vector for the OperandList with a compile time of ~38sec. Similar
expiriments were done with other sets of shaders. The compile time still
improved, but not as much.
Contributes to https://github.com/KhronosGroup/SPIRV-Tools/issues/1609.
The loop peeler util takes a loop as input and create a new one before.
The iterator of the duplicated loop then set to accommodate the number
of iteration required for the peeling.
The loop peeling pass that decided to do the peeling and profitability
analysis is left for a follow-up PR.
It moves all conditional branching and switch whose conditions are loop
invariant and uniform. Before performing the loop unswitch we check that
the loop does not contain any instruction that would prevent it
(barriers, group instructions etc.).