* Move ProcessFunction* function from pass to the context.
There are a few functions that are used to traverse the call tree.
They currently live in the Pass class, but they have nothing to do with
a pass, and may be needed outside of a pass. They would be better in
the ir context, or in a specific call tree class if we ever have a need
for it.
* Don't inline recursive functions.
Inlining does not check if a function is recursive or not. This has
been fine as long as the shader was a Vulkan shader, which forbid
recursive functions. However, not all shaders are vulkan, so either
we limit inlining to Vulkan shaders or we teach it to look for recursive
functions.
I prefer to keep the passes as general as is reasonable. The change
does not require much new code in inlining and gives a reason to refactor
some other code.
The changes are to add a member function to the Function class that
checks if that function is recursive or not.
Then this is used in inlining to not inlining a function call if it calls
a recursive function.
* Add id to function analysis
There are a few places that build a map from ids to Function whose
result is that id. I decided to add an analysis to the context for this
to reduce that code, and simplify some of the functions.
* Add missing file.
* Copy decorations when creating new ids.
When creating a new value based on an old value, we need to copy the
decorations to the new id. This change does this in 3 places:
1) The variable holding the return value of the function generated by
merge return should get decorations from the function.
2) The results of the OpPhi instructions should get decorations from the
variable they are replacing in the ssa writer.
3) In local access chain convert the intermediate struct (result of
OpCompositeInsert) generated for the store replacement should get its
decorations from the variable being stored to.
Fixes#1787.
In local-access-chain-convert, we replace loads by load the entire
variable, then doing the extract. The extract will have the same value
as the load. However, if the load has a decoration on it, the
decoration is lost because we do not copy any them to the new id.
This is fixed by rewritting the load into the extract and keeping the
same result id.
This change has the effect that we do not call DCEInst on the loads
because the load is not being deleted, but replaced. This could leave
OpAccessChain instructions around that are not used. This is not a
problem for -O and -Os. They run local_single_*_elim passes and then
dead code elimination. The dce will remove the unused access chains,
and the load elimination passes work even if there are unused access
chains. I have added test to them to ensure they will not loss
opportunities.
Fixes#1787.
Currently the IRContext is passed into the Pass::Process method. It is
then up to the individual pass to store the context into the context_
variable. This CL changes the Run method to store the context before
calling Process which no-longer receives the context as a parameter.
This CL moves the files in opt/ to consistenly be under the opt::
namespace. This frees up the ir:: namespace so it can be used to make a
shared ir represenation.
Optimizations should work in the presence of recent
SPV_GOOGLE_decorate_string and SPV_GOOGLE_hlsl_functionality1
SPV_GOOGLE_decorate_string:
- Adds operation OpDecorateStringGOOGLE to decorate an object with decorations
having string operands.
SPV_GOOGLE_hlsl_functionality1:
- Adds HlslSemanticGOOGLE, used to decorate an interface variable with
an HLSL semantic string. Optimizations already preserve those variables
as required because they are interface variables (with uses), independent
of whether they have HLSL decorations.
- Adds HlslCounterBufferGOOGLE, used to associate a buffer with a
counter variable.
Fixes#1391
The current method of removing an instruction is to call ToNop. The
problem with this is that it leaves around an instruction that later
passes will look at. We should just delete the instruction.
In MemPass there is a utility routine called DCEInst. It can delete
essentially any instruction, which can invalidate pointers now that they
are actually deleted. The interface was changed to add a call back that
can be used to update any local data structures that contain
ir::Intruction*.
Re-formatted the source tree with the command:
$ /usr/bin/clang-format -style=file -i \
$(find include source tools test utils -name '*.cpp' -or -name '*.h')
This required a fix to source/val/decoration.h. It was not including
spirv.h, which broke builds when the #include headers were re-ordered by
clang-format.
Replaced representation of uses
* Changed uses from unordered_map<uint32_t, UseList> to
set<pairInstruction*, Instruction*>>
* Replaced GetUses with ForEachUser and ForEachUse functions
* updated passes to use new functions
* partially updated tests
* lots of cleanup still todo
Adding an unique id to Instruction generated by IRContext
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.
Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
* Most constructors have been modified to take a context as input
* unfortunately I cannot remove the default and copy constructors, but
developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
* Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
* Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
Adding tests for Instruction, IRContext and IR loading
Fixed some header comments for BuildModule
Fixes to get tests passing again
* Reordered two linker steps to avoid use/def problems
* Fixed def/use manager uses in merge return pass
* Added early return for GetAnnotations
* Changed uses of Instruction::ToNop in passes to IRContext::KillInst
Simplifying the uses for some contexts in passes
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.
Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
* Most constructors have been modified to take a context as input
* unfortunately I cannot remove the default and copy constructors, but
developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
* Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
* Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
* Added an internal option to LinkerOptions to verify merged ids are
unique
* Added a test for the linker to verify merged ids are unique
* Updated MergeReturnPass to supply a context
* Updated DecorationManager to supply a context for cloned decorations
* Reworked several portions of the def use tests in anticipation of next
set of changes
To make the decoration manger available everywhere, and to reduce the
number of times it needs to be build, I add one the IRContext.
As the same time, I move code that modifies decoration instruction into
the IRContext from mempass and the decoration manager. This will make
it easier to keep everything up to date.
This should take care of issue #928.
NFC. This just makes sure every file is formatted following the
formatting definition in .clang-format.
Re-formatted with:
$ clang-format -i $(find source tools include -name '*.cpp')
$ clang-format -i $(find source tools include -name '*.h')
This change will move the instances of the def-use manager to the
IRContext. This allows it to persists across optimization, and does
not have to be rebuilt multiple times.
Added test to ensure that the IRContext is validating and invalidating
the analyses correctly.
This is the first part of adding the IRContext. This class is meant to
hold the extra data that is build on top of the module that it
owns.
The first part will simply create the IRContext class and get it passed
to the passes in place of the module. For now it does not have any
functionality of its own, but it acts more as a wrapper for the module.
The functions that I added to the IRContext are those that either
traverse the headers or add to them. I did this because we may decide
to have other ways of dealing with these sections (for example adding a
type pool, or use the decoration manager).
I also added the function that add to the header because the IRContext
needs to know when an instruction is added to update other data
structures appropriately.
Note that there is still lots of work that needs to be done. There are
still many places that change the module, and do not inform the context.
That will be the next step.
This implements two cleanups suggested by @s-perron
(https://github.com/KhronosGroup/SPIRV-Tools/pull/921):
- Move FindNamedOrDecoratedIds() into MemPass::InitializeProcessing().
- Remove FinalizeNextId(). Always call SetIdBound() from
Pass::TakeNextId().
Including a re-factor of common behaviour into class Pass:
The following functions are now in class Pass:
- IsLoopHeader.
- ComputeStructuredOrder
- ComputeStructuredSuccessors (annoyingly, I could not re-factor all
instances of this function, the copy in common_uniform_elim_pass.cpp
is slightly different and fails with the common implementation).
- GetPointeeTypeId
- TakeNextId
- FinalizeNextId
- MergeBlockIdIfAny
This is a NFC (non-functional change)
This is the first step in replacing the std::vector of Instruction
pointers to using and intrusive linked list.
To this end, we created the InstructionList class. It inherites from
the IntrusiveList class, but add the extra concept of ownership. An
InstructionList owns the instruction that are in it. This is to be
consistent with the current ownership rules where the vector owns the
instruction that are in it.
The other larger change is that the inst_ member of the BasicBlock class
was changed to using the InstructionList class.
Added test for the InsertBefore functions, and making sure that the
InstructionList destructor will delete the elements that it contains.
I've also add extra comments to explain ownership a little better.
Includes code to deal correctly with OpFunctionParameter. This
is needed by opaque propagation which may not exhaustively inline
entry point functions.
Adds ProcessEntryPointCallTree: a method to do work on the
functions in the entry point call trees in a deterministic order.
This avoids conversion on variables which will not ultimately be optimized.
Also removed an obsolete restriction from FindTargetVars(). Also added
decorates to supported refs (eg. RelaxedPrecision). Also fixed name to
IsNonTypeDecorate().
Currently only SPV_KHR_variable_pointers is disallowed in passes which
do pointer analysis. Positive and negative tests of the general extensions
mechanism were added to aggressive_dce but cover all passes.