Adding basis of arithmetic merging
* Refactored constant collection in ConstantManager
* New rules:
* consecutive negates
* negate of arithmetic op with a constant
* consecutive muls
* reciprocal of div
* Removed IRContext::CanFoldFloatingPoint
* replaced by Instruction::IsFloatingPointFoldingAllowed
* Fixed some bad tests
* added some header comments
Added PerformIntegerOperation
* minor fixes to constants and tests
* fixed IntMultiplyBy1 to work with 64 bit ints
* added tests for integer mul merging
Adding test for vector integer multiply merging
Adding support for merging integer add and sub through negate
* Added tests
Adding rules to merge mult with preceding divide
* Has a couple tests, but needs more
* Added more comments
Fixed bug in integer division folding
* Will no longer merge through integer division if there would be a
remainder in the division
* Added a bunch more tests
Adding rules to merge divide and multiply through divide
* Improved comments
* Added tests
Adding rules to handle mul or div of a negation
* Added tests
Changes for review
* Early exit if no constants are involved in more functions
* fixed some comments
* removed unused declaration
* clarified some logic
Adding new rules for add and subtract
* Fold adds of adds, subtracts or negates
* Fold subtracts of adds, subtracts or negates
* Added tests
Implementation of the simplification pass.
- Create pass that calls the instruction folder on each instruction and
propagate instructions that fold to a copy. This will do copy
propagation as well.
- Did not use the propagator engine because I want to modify the instruction
as we go along.
- Change folding to not allocate new instructions, but make changes in
place. This change had a big impact on compile time.
- Add simplification pass to the legalization passes in place of
insert-extract elimination.
- Added test cases for new folding rules.
- Added tests for the simplification pass
- Added a method to the CFG to apply a function to the basic blocks in
reverse post order.
Contributes to #1164.
Create the folding engine that will
1) attempt to fold an instruction.
2) iterates on the folding so small folding rules can be easily combined.
3) insert new instructions when needed.
I've added the minimum number of rules needed to test the features above.
The current folding routines have a very cumbersome interface, make them
harder to use, and not a obvious how to extend.
This change is to create a new interface for the folding routines, and
show how it can be used by calling it from CCP.
This does not make a significant change to the behaviour of CCP. In
general it should produce the same code as before; however it is
possible that an instruction that takes 32-bit integers as inputs and
the result is not a 32-bit integer or bool will not be folded as before.
It seems like andriod has a problem with INT32_MAX and the like. I'll
explicitly define those if the are not already defined.
The current folding routines have a very cumbersome interface, make them
harder to use, and not a obvious how to extend.
This change is to create a new interface for the folding routines, and
show how it can be used by calling it from CCP.
This does not make a significant change to the behaviour of CCP. In
general it should produce the same code as before; however it is
possible that an instruction that takes 32-bit integers as inputs and
the result is not a 32-bit integer or bool will not be folded as before.
This addresses review feedback for the CCP implementation (which fixes
https://github.com/KhronosGroup/SPIRV-Tools/issues/889).
This adds more protection around the folding of instructions that would
not be supported by the folder.
This implements the conditional constant propagation pass proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The main logic resides in CCPPass::VisitInstruction. Instruction that
may produce a constant value are evaluated with the constant folder. If
they produce a new constant, the instruction is considered interesting.
Otherwise, it's considered varying (for unfoldable instructions) or
just not interesting (when not enough operands have a constant value).
The other main piece of logic is in CCPPass::VisitBranch. This
evaluates the selector of the branch. When it's found to be a known
value, it computes the destination basic block and sets it. This tells
the propagator which branches to follow.
The patch required extensions to the constant manager as well. Instead
of hashing the Constant pointers, this patch changes the constant pool
to hash the contents of the Constant. This allows the lookups to be
done using the actual values of the Constant, preventing duplicate
definitions.
There are no functional changes in this patch. The generic folding
routines in FoldSpecConstantOpAndCompositePass are now inside opt/fold.{cpp,h}.
This code will be used by the upcoming constant propagation pass. In
time, we'll add more expression folding and simplification into these
two files.