This PR adds a generic dataflow analysis framework to SPIRV-opt, with the intent of being used in SPIRV-lint. This may also be useful for SPIRV-opt, as existing ad-hoc analyses can be rewritten to use a common framework, but this is not the target of this PR.
Control dependence analysis constructs a control dependence graph,
representing the conditions for a block's execution relative to the
results of other blocks with conditional branches, etc.
This is an analysis pass that will be useful for the linter and
potentially also useful in opt. Currently it is unused except for the
added unit tests.
The new pass will removed interface variable on the OpEntryPoint instruction when they are not statically referenced in the call tree of the entry point.
It can be enabled on the command line using the options `remove-unused-interface-variables`.
This change allows the reducer to merge together blocks even when they
are unreachable, but keeps the restriction of reachability in place
for the optimizer.
Fixes#4302.
There was a lot of code in the codebase that would get the dominator
analysis for a function and then use it to check whether a block is
reachable. In the fuzzer, a utility method had been introduced to make
this more concise, but it was not being used consistently.
This change moves the utility method to IRContext, so that it can be
used throughout the codebase, and refactors all existing checks for
block reachability to use the utility method.
* Initial support for SPV_KHR_integer_dot_product
- Adds new operand types for packed-vector-format
- Moves ray tracing enums to the end
- PackedVectorFormat is a new optional operand type, so it requires
special handling in grammar table generation.
- Add SPV_KHR_integer_dot_product to optimizer whitelists.
- Pass-through validation: valid cases pass validation
Validation errors are not checked.
- Update SPIRV-Headers
Patch by David Neto <dneto@google.com>
Rebase and minor tweaks by Kevin Petit <kevin.petit@arm.com>
Signed-off-by: David Neto <dneto@google.com>
Signed-off-by: Kevin Petit <kevin.petit@arm.com>
Change-Id: Icb41741cb7f0f1063e5541ce25e5ba6c02266d2c
* format fixes
Change-Id: I35c82ec27bded3d1b62373fa6daec3ffd91105a3
Fix dangling phi bug from loop-unroll
When unrolling the following loop:
```
%const0 = OpConstant ...
%const1 = OpConstant ...
...
%LoopHeader = OpLabel
%phi0 = OpPhi %float %const0 %PreHeader %phi1 %Latch
%phi1 = OpPhi %float %const1 %PreHeader %x %Latch
...
%LoopBody = OpLabel
%x = OpFSub %float %phi1 %phi0
...
```
the loop-unroll pass sets the value of `%phi0` as `%phi1` for the second
copy of the loop body. For example, the second copy of
`%x = OpFSub %float %phi1 %phi0` will be
`%y = OpFSub %float %x %phi1`.
Since all phi instructions for inductions will are removed after the
loop unrolling, `%phi1` will be a dead dangling phi.
It happens only for the phi values of the first loop iteration. Replacing those
dangling phis with their initial values fixes this issue.
For example, the second copy of `%x = OpFSub %float %phi1 %phi0` should be
`%y = OpFSub %float %x %const1` because the value of `%phi1` from the
first loop iteration is `%const1`.
This pass converts an internal form of GLSLstd450 Interpolate ops
to the externally valid form. The external form takes the lvalue
of the interpolant. The internal form can do a load of the interpolant.
The pass replaces the load with its pointer. The internal form is
generated by glslang and possibly other frontends for HLSL shaders.
The new pass is called as part of HLSL legalization after all
propagation is complete.
Also adds internal interpolate form to pre-legalization validation
This allows the GPU-AV layer to differentiate between errors with
uniform buffers versus storage buffers and map these to the relevant
VUIDs.
This is a resubmit of a previously reverted commit. The revert was
done as someone erroneously attempted to build the latest validation
layers with a TOT spirv-tools. The validation layers must be built with
their known-good glslang and its known-good spirv-tools and spirv-headers.
* Mark module as modified if convert-to-half removes decorations.
If the convert-to-half pass does not change the body of the function,
but removes decorations, it returns that nothing changed. This is
incorrect, and will be fixed.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/4117
* Update comment for RemoveDecorationsFrom
The existing spirv-opt `DebugInfoManager::AddDebugValueForDecl()` sets
the scope and line info of the new added DebugValue using the scope and
line of DebugDeclare. This is wrong because only a single DebugDeclare
must exist under a scope while we have to add DebugValue for all the
places where the variable's value is updated. Therefore, we have to set
the scope and line of DebugValue based on the places of the variable
updates.
This bug makes
https://github.com/google/amber/blob/main/tests/cases/debugger_hlsl_shadowed_vars.amber
fail. This commit fixes the bug.
* Work around GCC-9 warning treated as error
```
../source/opt/instruction.h:101:23: error: '*((void*)& operand +32)' may be used uninitialized in this function [-Werror=maybe-uninitialized]
101 | uint64_t result = uint64_t(words[0]);
```
* Migrate all Kokoro build scripts over to use the docker VM image
Required updating the NDK SDK and build scripts, as well as the check_copyright for handling 2021.
Propagating the OpLine/OpNoLine to preserve the debug information
through transformations results in integrity check failures because of
the extra line instructions. This commit lets spirv-opt skip the
integrity check when the code contains OpLine or OpNoLine.
When there is an array of strutured buffers, desc sroa will only split
the array, but not a struct type in the structured buffer. However,
the calcualtion of the number of binding a struct requires does not take
this into consideration. This commit will fix that.
Similar to [1] DCE should be ran when this extension is enabled to
prevent unused bindings from showing up (in particular atomic counters
attached to buffers).
[1]: https://github.com/KhronosGroup/SPIRV-Tools/pull/4047
The eliminate dead member pass is written assuming that the index to an
OpAccessChain will be a 32-bit integer or 64-bit integer. That is
changed to work for any width 64-bits or less.
Fixes https://crbug.com/1151727
This instruments ImageRead, ImageWrite and ImageFetch when applied to
texel buffers.
Also add new (but not yet generated) buffer OOB error codes differentiated
for VUID classification.
* BuildModule: optionally avoid adding new OpLine instructions
Fixes#4029 for my use case
* Fix formatting
* Create last_line_inst_ only if doing extra line tracking
* Update to final ray tracing extensions
Drop Provisional from ray tracing enums
sed -ie 's/RayQueryProvisionalKHR/RayQueryKHR/g' **/*
sed -ie 's/RayTracingProvisionalKHR/RayTracingKHR/g' **/*
Add terminator support for SpvOpIgnoreIntersectionKHR and SpvOpTerminateRayKHR
Update deps for SPIRV-Headers
* Update capability dependencies for MeshShadingNV
Accommodate https://github.com/KhronosGroup/SPIRV-Headers/pull/180
MeshShadingNV: enables PrimitiveId, Layer, and ViewportIndex
Co-authored-by: Daniel Koch <dkoch@nvidia.com>
Fix buffer oob instrumentation for matrix refs.
Matrix stride decoration is not on matrix type but is a member decoration
on the enclosing struct type. Also correctly apply matrix stride depending
on row or column major.
spirv-opt has a bug that `DebugInfoManager::AddDebugValueWithIndex()` does not
preserve `Indexes` operands of
[DebugValue](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugValue).
It has to preserve all of those `Indexes` operands, but it preserves only the first index
operand.
This PR removes `DebugInfoManager::AddDebugValueWithIndex()` and lets the spirv-opt
use `DebugInfoManager::AddDebugValueForDecl()`.
`DebugInfoManager::AddDebugValueForDecl()` preserves the Indexes operand correctly.
The front-end language compiler would simply emit DebugDeclare for
a variable when it is declared, which is effective through the variable's
scope. Since DebugDeclare only maps an OpVariable to a local variable,
the information can be removed when an optimization pass uses the
loaded value of the variable. DebugValue can be used to specify the
value of a variable. For each value update or phi instruction of a variable,
we can add DebugValue to help debugger inspect the variable at any
point of the program execution.
For example,
float a = 3;
... (complicated cfg) ...
foo(a); // <-- variable inspection: debugger can find DebugValue of `float a` in the nearest dominant
For the code with complicated CFG e.g., for-loop, if-statement, we
need help of ssa-rewrite to analyze the effective value of each variable
in each basic block.
If the value update of the variable happens only once and it dominates
all its uses, local-single-store-elim pass conducts the same value update
with ssa-rewrite and we have to let it add DebugValue for the value assignment.
One main issue is that we have to add DebugValue only when the value
update of a variable is visible to DebugDeclare. For example,
```
{ // scope1
%stack = OpVariable %ptr_int %int_3
{ // scope2
DebugDeclare %foo %stack <-- local variable "foo" in high-level language source code is declared as OpVariable "%stack"
// add DebugValue "foo = 3"
...
Store %stack %int_7 <-- foo = 7, add DebugValue "foo = 7"
...
// debugger can inspect the value of "foo"
}
Store %stack %int_11 <-- out of "scope2" i.e., scope of "foo". DO NOT add DebugValue "foo = 11"
}
```
However, the initalization of a variable is an exception.
For example, an argument passing of an inlined function must be done out of
the function's scope, but we must add a DebugValue for it.
```
// in HLSL
bar(float arg) { ... }
...
float foo = 3;
bar(foo);
// in SPIR-V
%arg = OpVariable
OpStore %arg %foo <-- Argument passing. Out of "float arg" scope, but we must add DebugValue for "float arg"
... body of function bar(float arg) ...
```
This PR handles the except case in local-single-store-elim pass. It adds
DebugValue for a store that is considered as an initialization.
The same exception handling code for ssa-rewrite is done by this commit: df4198e50e.