Function static non-POD data causes problems with DLL lifetime.
This pull request turns all static info tables into strict POD
tables. Specifically, the capabilities/extensions field of
opcode/operand/extended-instruction table are turned into two
fields, one for the count and the other a pointer to an array of
capabilities/extensions. CapabilitySet/EnumSet are not used in
the static table anymore, but they are still used for checking
inclusion by constructing on the fly, which should be cheap for
the majority cases.
Also moves all these tables into the global namespace to avoid
C++11 function static thread-safe initialization overhead.
Known extensions are saved in validation state. Unknown extension
produce a dignostic message, but do not fail the validation.
Moved extension definitions to their own file.
Requires use of SPIRV-Headers that has support
for SPV_KHR_shader_ballot.
Adds assembler, disassembler, binary parser support.
Adds general support for allowing an operand to be
only enabled by a set of extensions.
TODO: Validator support for extension checking.
Every time an event happens in the library that the user should be
aware of, the callback will be invoked.
The existing diagnostic mechanism is hijacked internally by a
callback that creates an diagnostic object each time an event
happens.
Use libspirv::CapabilitySet instead of a 64-bit mask.
Remove dead function spvOpcodeRequiresCapability and its tests.
The JSON grammar parser is simplified since it just writes the
list of capabilities as a braced list, and takes advantage of
the CapabilitySet intializer-list constructor.
For fulfilling this purpose, the |opcode| field in the
|spv_parsed_instruction_t| struct is changed to of type uint16_t.
Also add functions to query the information of a given SPIR-V
target environment.
This patch uses a Python script to parse the JSON grammar file to
generate the opcode table and operand kind tables.
Now we don't need to do the post-processing (from OperandClass
to spv_operand_type_t) and copying of the opcode info table is
not required anymore!
Now we have public headers arranged as follows:
$SPIRV_TOOLS_ROOT/include/spirv-tools/libspirv.h
$SPIRV_TOOLS_ROOT/include/spirv/spirv.h
$SPIRV_TOOLS_ROOT/include/spirv/GLSL.std.450.h
$SPIRV_TOOLS_ROOT/include/spirv/OpenCL.std.h
A project should use -I$SPIRV_TOOLS_ROOT/include
and then #include "spirv-tools/libspirv.h"
The headers from the SPIR-V Registry can be accessed as "spirv/spirv."
for example.
The install target should also install the headers from the SPIR-V
Registry. The libspirv.h header is broken otherwise.
The SPIRV-Tools library depends on the headers from the SPIR-V Registry.
The util/bitutils.h and util/hex_float.h are pulled into the internal
source tree. Those are not part of the public API to SPIRV-Tools.
Previously the opcode table is declared as an global array and we
have spvOpcodeTableInitialize() modifying it. That can result in
race condition. Now spvOpcodeTabelGet() copies the whole underlying
array.