This CL removes the redundant operator name from the error messages in
validate_composites. The operator will be printed on the next line with
the disassembly.
This CL splits the switch in ImagePass into individual validate
functions. The error messages have been updated to drop the
suffix/prefix of the opcode name since it will be displayed in the
disassembly.
This CL updates the code to pull a valid instruction for the line number
when outputting a component error in OpVectorShuffle. The error line
isn't the best at this point as it points at the component, but it's
better then a -1 (turning to max<size_t>) that was being output.
The error messages has been updated to better reflect what the error is
attempting to say.
Issue 1719.
When folding a vector shuffle that feeds another vector shuffle causes
the size of the first operand to change, when other indices have to be
adjusted reletive to the new size.
- Vulkan 1.0 uses strict layout rules
- Vulkan 1.0 with relaxed-block-layout validator option
enforces all rules except for the relaxation of vector
offset.
- Vulkan 1.1 and later always supports relaxed block layout
Add spot check tests for the relaxed-block-layout scenarios.
Fixes#1697
This CL moves the various validate files into the val/ directory with
the rest of the validation infrastructure. This matches how opt/ is
setup with the passes with the infrastructure.
Other environments do not.
Add tests for OpenGL 4.5 and SPIR-V universal 1.0 to ensure
they still check monotonic layout.
For universal 1.0, we're assuming it otherwise follows Vulkan
rules for block layout.
Fixes#1685
For the instructions which execute after the IdPass check we can provide
the Instruction instead of the spv_parsed_instruction_t. This
Instruction class provides a bit more context (like the source line)
that is not available from spv_parsed_instruction_t.
This CL moves the validation code to the val:: namespace. This makes it
clearer which instance of the Instruction and other classes are being
referred too.
- Add asm/dis test for SPV_KHR_8bit_storage
- validator: SPV_KHR_8bit_storage capabilities enable declaration of 8bit int
TODO:
- validator: ban arithmetic on 8bit unless Int8 is enabled
Covered by https://github.com/KhronosGroup/SPIRV-Tools/issues/1595
Produce better error diagnostics in the CFG validation.
This CL fixes up several issues with the diagnostic error line output
in the CFG validation code. For the cases where we can determine a
better line it has been output. For other cases, we removed the
diagnostic line and the error line number from the results.
Fixes#1657
Add SPV_ENV_WEBGPU_0 for work-in-progress WebGPU.
val: Disallow OpUndef in WebGPU env
Silence unused variable warnings when !defined(SPIRV_EFFCE)
Limit visibility of validate_instruction.cpp's symbols
Only InstructionPass needs to be visible so all other functions are put
in an anonymous namespace inside the libspirv namespace.
[val] Add extra context to error messages.
This CL extends the error messages produced by the validator to output the
disassembly of the errored line.
The validation_id messages have also been updated to print the line number of
the error instead of the word number. Note, the error number is from the start
of the SPIR-V, it does not include any headers printed in the disassembled code.
Fixes#670, #1581
Fixes#491
* Basic blocks now have a link to the terminator
* Check all case sepecific rules
* Missing check for branching into the middle of a case (#1618)
Fixes#1120
Checks that all static uses of the Input and Output variables are listed
as interfaces in each corresponding entry point declaration.
* Changed validation state to track interface lists
* updated many tests
* Modified validation state to store entry point names
* Combined with interface list and called EntryPointDescription
* Updated uses
* Changed interface validation error messages to output entry point name
in addtion to ID
Fixes#1281
* New structured cfg check: all non-construct header blocks'
predecessors must come from within the construct
* New function to calculate blocks in a construct
* Fixed a bug in BasicBlock type bitset
Relaxing check to not consider unreachable predecessors
* Fixing broken common uniform elim test
According to the SPIR-V Spec, section 2.4 Logical Layout of a Module there
should be a single required OpMemoryModel instruction provided. This CL adds
validation that OpMemoryModel is provided to the SPIR-V validator.
Fixes#1207
* Reworked how execution model limitations are checked
* Now OpFunction checks which entry points call it and checks its
registered limitations instead of building a call stack in the entry
point
* New tests
* Moving function to entry point mapping into VState
Refactored validate built-ins to make
GetExecutionModels(entry_point)
and
GetExecutionModes(entry_point)
available in validation state.
Entry points are allowed to have multiple execution modes and execution
models.
Finished the last missing feature in Vulkan built-ins validation:
FragDepth requires DepthReplacing.
Added a framework for validation of BuiltIn variables. The framework
allows implementation of flexible abstract rules which are required for
built-ins as the information (decoration, definition, reference) is not
in one place, but is scattered all over the module.
Validation rules are implemented as a map
id -> list<functor(instrution)>
Ids which are dependent on built-in types or objects receive a task
list, such as "this id cannot be referenced from function which is
called from entry point with execution model X; propagate this rule
to your descendants in the global scope".
Also refactored test/val/val_fixtures.
All built-ins covered by tests
This needs custom code since the rules from the extension
are not encoded in the grammar.
Changes are:
- The new group instructions don't require Group capability
when the extension is declared.
- The Reduce, InclusiveScan, ExclusiveScan normally require the Kernel
capability, but don't when the extension is declared.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/991
Re-formatted the source tree with the command:
$ /usr/bin/clang-format -style=file -i \
$(find include source tools test utils -name '*.cpp' -or -name '*.h')
This required a fix to source/val/decoration.h. It was not including
spirv.h, which broke builds when the #include headers were re-ordered by
clang-format.
NFC. This just makes sure every file is formatted following the
formatting definition in .clang-format.
Re-formatted with:
$ clang-format -i $(find source tools include -name '*.cpp')
$ clang-format -i $(find source tools include -name '*.h')
There are a number of users of spriv-opt that are hitting errors
because of stores with different types. In general, this is wrong, but,
in these cases, the types are the exact same except for decorations.
The options is "--relax-store-struct", and it can be used with the
validator or the optimizer.
We assume that if layout information is missing it is consistent. For
example if one struct has a offset of one of its members, and the other
one does not, we will still consider them as being layout compatible.
The problem will be if both struct has and offset decoration for
corresponding members, and the offset are different.
Function static non-POD data causes problems with DLL lifetime.
This pull request turns all static info tables into strict POD
tables. Specifically, the capabilities/extensions field of
opcode/operand/extended-instruction table are turned into two
fields, one for the count and the other a pointer to an array of
capabilities/extensions. CapabilitySet/EnumSet are not used in
the static table anymore, but they are still used for checking
inclusion by constructing on the fly, which should be cheap for
the majority cases.
Also moves all these tables into the global namespace to avoid
C++11 function static thread-safe initialization overhead.
The pass checks correctness of operands of instruction in opcode range
OpConvertFToU - OpBitset.
Disabled invalid tests
Disabled UConvert validation until Vulkan CTS can catch up.
Add validate_conversion to Android.mk
Also remove duplicate entry in CMakeLists.txt.
Command line application is located at tools/spirv-markv
API at include/spirv-tools/markv.h
At the moment only very basic compression is implemented, mostly varint.
Scope of supported SPIR-V opcodes is also limited.
Using a simple move-to-front implementation instead of encoding mapped
ids.
Work in progress:
- Does not cover all of SPIR-V
- Does not promise compatibility of compression/decompression across
different versions of the code.