Upgrade to VulkanKHR memory model
* Converts Logical GLSL450 memory model to Logical VulkanKHR
* Adds extension and capability
* Removes deprecated decorations and replaces them with appropriate
flags on downstream instructions
* Support for Workgroup upgrades
* Support for copy memory
* Adding support for image functions
* Adding barrier upgrades and tests
* Use QueueFamilyKHR scope instead of device
* Move ProcessFunction* function from pass to the context.
There are a few functions that are used to traverse the call tree.
They currently live in the Pass class, but they have nothing to do with
a pass, and may be needed outside of a pass. They would be better in
the ir context, or in a specific call tree class if we ever have a need
for it.
* Don't inline recursive functions.
Inlining does not check if a function is recursive or not. This has
been fine as long as the shader was a Vulkan shader, which forbid
recursive functions. However, not all shaders are vulkan, so either
we limit inlining to Vulkan shaders or we teach it to look for recursive
functions.
I prefer to keep the passes as general as is reasonable. The change
does not require much new code in inlining and gives a reason to refactor
some other code.
The changes are to add a member function to the Function class that
checks if that function is recursive or not.
Then this is used in inlining to not inlining a function call if it calls
a recursive function.
* Add id to function analysis
There are a few places that build a map from ids to Function whose
result is that id. I decided to add an analysis to the context for this
to reduce that code, and simplify some of the functions.
* Add missing file.
These are bookend passes designed to help preserve line information
across passes which delete, move and clone instructions. The propagation
pass attaches a debug line instruction to every instruction based on
SPIR-V line propagation rules. It should be performed before optimization.
The redundant line elimination pass eliminates all line instructions
which match the previous line instruction. This pass should be performed
at the end of optimization to reduce physical SPIR-V file size.
Fixes#2027.
* Add base and core bindless validation instrumentation classes
* Fix formatting.
* Few more formatting fixes
* Fix build failure
* More build fixes
* Need to call non-const functions in order.
Specifically, these are functions which call TakeNextId(). These need to
be called in a specific order to guarantee that tests which do exact
compares will work across all platforms. c++ pretty much does not
guarantee order of evaluation of operands, so any such functions need to
be called separately in individual statements to guarantee order.
* More ordering.
* And more ordering.
* And more formatting.
* Attempt to fix NDK build
* Another attempt to address NDK build problem.
* One more attempt at NDK build failure
* Add instrument.hpp to BUILD.gn
* Some name improvement in instrument.hpp
* Change all types in instrument.hpp to int.
* Improve documentation in instrument.hpp
* Format fixes
* Comment clean up in instrument.hpp
* imageInst -> image_inst
* Fix GetLabel() issue.
This CL takes the various opt unit tests and makes a single executable
instead of one per test. This reduces the number of build targets by
~125 when building with ninja.
* Create structed cfg analysis.
There are lots of optimization that have to traverse the CFG in a
structured order just because it wants to know which constructs a
basic block in contained in. This adds extra complexity to these
optimizations, for causes too much refactoring of older optimizations.
To help with this problem, I have written an analysis that can give this
information.
* Identify branches breaking from loops.
Dead branch elimination does a search for a conditional branch to the
end of the current selection construct. This search assumes that the
only way to leave the construct is through the merge node. But that is
not true. The code can jump to the merge node of a loop that contains
the construct.
The search needs to take this into consideration.
* Combines OpAccessChain, OpInBoundsAccessChain, OpPtrAccessChain and
OpInBoundsPtrAccessChain
* New folding rule to fold add with 0 for integers
* Converts to a bitcast if the result type does not match the operand
type
V
There are a few locations where we need to handle duplicate types. We
cannot merge them because they may be needed for reflection. When this
happens we need do some extra lookups in the type manager.
The specific fixes are:
1) When generating a constant through `GetDefiningInstruction` accept
and use an id for the desired type of the constant. This will make sure
you get the type that is needed.
2) In Private-to-local, make sure we to update the def-use chains when a
new pointer type is created.
3) In the type manager, make sure that `FindPointerToType` returns a
pointer that points to the given type and not a duplicate type.
4) In scalar replacment, make sure the null constants that are created
are the correct type.
We have already disabled common uniform elimination because it created
sequences of loads an entire uniform object, then we extract just a
single element. This caused problems in some drivers, and is just
generally slow because it loads more memory than needed.
However, there are other way to get into this situation, so I've added
a pass that looks specifically for this pattern and removes it when only
a portion of the load is used.
Fixes#1547.
Introduce a pass that does a DCE type analysis for vector elements
instead of the whole vector as a single element.
It will then rewrite instructions that are not used with something else.
For example, an instruction whose value are not used, even though it is
referenced, is replaced with an OpUndef.
For each function, the analysis determine which SSA registers are live
at the beginning of each basic block and which one are killed at
the end of the basic block.
It also includes utilities to simulate the register pressure for loop
fusion and fission.
The implementation is based on the paper "A non-iterative data-flow
algorithm for computing liveness sets in strict ssa programs" from
Boissinot et al.
Provides functionality to perform ZIV and SIV dependency analysis tests
between a load and store within the same loop.
Dependency tests rely on scalar analysis to prove and disprove dependencies
with regard to the loop being analysed.
Based on the 1990 paper Practical Dependence Testing by Goff, Kennedy, Tseng
Adds support for marking loops in the loop nest as IRRELEVANT.
Loops are marked IRRELEVANT if the analysed instructions contain
no induction variables for the loops, i.e. the loops induction
variable is not relevent to the dependence of the store and load.
This patch adds support for the analysis of scalars in loops. It works
by traversing the defuse chain to build a DAG of scalar operations and
then simplifies the DAG by folding constants and grouping like terms.
It represents induction variables as recurrent expressions with respect
to a given loop and can simplify DAGs containing recurrent expression by
rewritting the entire DAG to be a recurrent expression with respect to
the same loop.
The sprir-v generated from HLSL code contain many copyies of very large
arrays. Not only are these time consumming, but they also cause
problems for drivers because they require too much space.
To work around this, we will implement an array copy propagation. Note
that we will not implement a complete array data flow analysis in order
to implement this. We will be looking for very simple cases:
1) The source must never be stored to.
2) The target must be stored to exactly once.
3) The store to the target must be a store to the entire array, and be a
copy of the entire source.
4) All loads of the target must be dominated by the store.
The hard part is keeping all of the types correct. We do not want to
have to do too large a search to update everything, which may not be
possible, do we give up if we see any instruction that might be hard to
update.
Also in types.h, the element decorations are not stored in an std::map.
This change was done so the hashing algorithm for a Struct is
consistent. With the std::unordered_map, the traversal order was
non-deterministic leading to the same type getting hashed to different
values. See |Struct::GetExtraHashWords|.
Contributes to #1416.
Strips reflection info. This is limited to decorations and
decoration instructions related to the SPV_GOOGLE_hlsl_functionality1
extension.
It will remove the OpExtension for SPV_GOOGLE_hlsl_functionality1.
It will also remove the OpExtension for SPV_GOOGLE_decorate_string
if there are no further remaining uses of OpDecorateStringGOOGLE.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1398
Implementation of the simplification pass.
- Create pass that calls the instruction folder on each instruction and
propagate instructions that fold to a copy. This will do copy
propagation as well.
- Did not use the propagator engine because I want to modify the instruction
as we go along.
- Change folding to not allocate new instructions, but make changes in
place. This change had a big impact on compile time.
- Add simplification pass to the legalization passes in place of
insert-extract elimination.
- Added test cases for new folding rules.
- Added tests for the simplification pass
- Added a method to the CFG to apply a function to the basic blocks in
reverse post order.
Contributes to #1164.
Creates a pass that will remove instructions that are invalid for the
current shader stage. For the instruction to be considered for replacement
1) The opcode must be valid for a shader modules.
2) The opcode must be invalid for the current shader stage.
3) All entry points to the module must be for the same shader stage.
4) The function containing the instruction must be reachable from an entry point.
Fixes#1247.
* Handles simple cases only
* Identifies phis in blocks with two predecessors and attempts to
convert the phi to an select
* does not perform code motion currently so the converted values must
dominate the join point (e.g. can't be defined in the branches)
* limited for now to two predecessors, but can be extended to handle
more cases
* Adding if conversion to -O and -Os
The current folding routines have a very cumbersome interface, make them
harder to use, and not a obvious how to extend.
This change is to create a new interface for the folding routines, and
show how it can be used by calling it from CCP.
This does not make a significant change to the behaviour of CCP. In
general it should produce the same code as before; however it is
possible that an instruction that takes 32-bit integers as inputs and
the result is not a 32-bit integer or bool will not be folded as before.
It seems like andriod has a problem with INT32_MAX and the like. I'll
explicitly define those if the are not already defined.
The class factorize the instruction building process.
Def-use manager analysis can be updated on the fly to maintain coherency.
To be updated to take into account more analysis.
We have come across a driver bug where and OpUnreachable inside a loop
is causing the shader to go into an infinite loop. This commit will try
to avoid this bug by turning OpUnreachable instructions that are
contained in a loop into branches to the loop merge block.
This is not added to "-O" and "-Os" because it should only be used if
the driver being targeted has this problem.
Fixes#1209.
Add post-order tree iterator.
Add DominatorTreeNode extensions:
- Add begin/end methods to do pre-order and post-order tree traversal from a given DominatorTreeNode
Add DominatorTree extensions:
- Add begin/end methods to do pre-order and post-order tree traversal
- Tree traversal ignore by default the pseudo entry block
- Retrieve a DominatorTreeNode from a basic block
Add loop descriptor:
- Add a LoopDescriptor class to register all loops in a given function.
- Add a Loop class to describe a loop:
- Loop parent
- Nested loops
- Loop depth
- Loop header, merge, continue and preheader
- Basic blocks that belong to the loop
Correct a bug that forced dominator tree to be constantly rebuilt.
This implements the conditional constant propagation pass proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The main logic resides in CCPPass::VisitInstruction. Instruction that
may produce a constant value are evaluated with the constant folder. If
they produce a new constant, the instruction is considered interesting.
Otherwise, it's considered varying (for unfoldable instructions) or
just not interesting (when not enough operands have a constant value).
The other main piece of logic is in CCPPass::VisitBranch. This
evaluates the selector of the branch. When it's found to be a known
value, it computes the destination basic block and sets it. This tells
the propagator which branches to follow.
The patch required extensions to the constant manager as well. Instead
of hashing the Constant pointers, this patch changes the constant pool
to hash the contents of the Constant. This allows the lookups to be
done using the actual values of the Constant, preventing duplicate
definitions.
* changed the way duplicate types are removed to stop copying
instructions
* Reworked RemoveDuplicatesPass::AreTypesSame to use type manager and
type equality
* Reworked TypeManager memory management to store a pool of unique
pointers of types
* removed unique pointers from id map
* fixed instances where free'd memory could be accessed
When a private variable is used in a single function, it can be
converted to a function scope variable in that function. This adds a
pass that does that. The pass can be enabled using the option
`--private-to-local`.
This transformation allows other transformations to act on these
variables.
Also moved `FindPointerToType` from the inline class to the type manager.
Adds a scalar replacement pass. The pass considers all function scope
variables of composite type. If there are accesses to individual
elements (and it is legal) the pass replaces the variable with a
variable for each composite element and updates all the uses.
Added the pass to -O
Added NumUses and NumUsers to DefUseManager
Added some helper methods for the inst to block mapping in context
Added some helper methods for specific constant types
No longer generate duplicate pointer types.
* Now searches for an existing pointer of the appropriate type instead
of failing validation
* Fixed spec constant extracts
* Addressed changes for review
* Changed RunSinglePassAndMatch to be able to run validation
* current users do not enable it
Added handling of acceptable decorations.
* Decorations are also transfered where appropriate
Refactored extension checking into FeatureManager
* Context now owns a feature manager
* consciously NOT an analysis
* added some test
* fixed some minor issues related to decorates
* added some decorate related tests for scalar replacement
Adds a pass that looks for redundant instruction in a function, and
removes them. The algorithm is a hash table based value numbering
algorithm that traverses the dominator tree.
This pass removes completely redundant instructions, not partially
redundant ones.
Support for dominator and post dominator analysis on ir::Functions. This patch contains a DominatorTree class for building the tree and DominatorAnalysis and DominatorAnalysisPass classes for interfacing and caching the built trees.
This class implements a generic value propagation algorithm based on the
conditional constant propagation algorithm proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The implementation is based on
A Propagation Engine for GCC
Diego Novillo, GCC Summit 2005
http://ols.fedoraproject.org/GCC/Reprints-2005/novillo-Reprint.pdf
The purpose of this implementation is to act as a common framework for any
transformation that needs to propagate values from statements producing new
values to statements using those values.
Creates a pass that removes redundant instructions within the same basic
block. This will be implemented using a hash based value numbering
algorithm.
Added a number of functions that check for the Vulkan descriptor types.
These are used to determine if we are variables are read-only or not.
Implemented a function to check if loads and variables are read-only.
Implemented kernel specific and shader specific versions.
A big change is that the Combinator analysis in ADCE is factored out
into the IRContext as an analysis. This was done because it is being
reused in the value number table.
Works with current DefUseManager infrastructure.
Added merge return to the standard opts.
Added validation to passes.
Disabled pass for shader capabilty.
This change will move the instances of the def-use manager to the
IRContext. This allows it to persists across optimization, and does
not have to be rebuilt multiple times.
Added test to ensure that the IRContext is validating and invalidating
the analyses correctly.
There does not seem to be any pass that remove global variables. I
think we could use one. This pass will look specifically for global
variables that are not referenced and are not exported. Any decoration
associated with the variable will also be removed. However, this could
cause types or constants to become unreferenced. They will not be
removed. Another pass will have to be called to remove those.
This is the first step in replacing the std::vector of Instruction
pointers to using and intrusive linked list.
To this end, we created the InstructionList class. It inherites from
the IntrusiveList class, but add the extra concept of ownership. An
InstructionList owns the instruction that are in it. This is to be
consistent with the current ownership rules where the vector owns the
instruction that are in it.
The other larger change is that the inst_ member of the BasicBlock class
was changed to using the InstructionList class.
Added test for the InsertBefore functions, and making sure that the
InstructionList destructor will delete the elements that it contains.
I've also add extra comments to explain ownership a little better.
- Adds a new pass CFGCleanupPass. This serves as an umbrella pass to
remove unnecessary cruft from a CFG.
- Currently, the only cleanup operation done is the removal of
unreachable basic blocks.
- Adds unit tests.
- Adds a flag to spirvopt to execute the pass (--cfg-cleanup).
Creates a pass called eliminate dead functions that looks for functions
that could never be called, and deletes them from the module.
To support this change a new function was added to the Pass class to
traverse the call trees from diffent starting points.
Includes a test to ensure that annotations are removed when deleting a
dead function. They were not, so fixed that up as well.
Did some cleanup of the assembly for the test in pass_test.cpp. Trying
to make them smaller and easier to read.
Create a new optimization pass, strength reduction, which will replace
integer multiplication by a constant power of 2 with an equivalent bit
shift. More changes could be added later.
- Does not duplicate constants
- Adds vector |Concat| utility function to a common test header.
Only inline calls to functions with opaque params or return
TODO: Handle parameter type or return type where the opqaue
type is buried within an array.
- UniformElim: Only process reachable blocks
- UniformElim: Don't reuse loads of samplers and images across blocks.
Added a second phase which only reuses loads within a block for samplers
and images.
- UniformElim: Upgrade CopyObject skipping in GetPtr
- UniformElim: Add extensions whitelist
Currently disallowing SPV_KHR_variable_pointers because it doesn't
handle extended pointer forms.
- UniformElim: Do not process shaders with GroupDecorate
- UniformElim: Bail on shaders with non-32-bit ints.
- UniformElim: Document support for only single index and add TODO.
Create aggressive dead code elimination pass
This pass eliminates unused code from functions. In addition,
it detects and eliminates code which may have spurious uses but which do
not contribute to the output of the function. The most common cause of
such code sequences is summations in loops whose result is no longer used
due to dead code elimination. This optimization has additional compile
time cost over standard dead code elimination.
This pass only processes entry point functions. It also only processes
shaders with logical addressing. It currently will not process functions
with function calls. It currently only supports the GLSL.std.450 extended
instruction set. It currently does not support any extensions.
This pass will be made more effective by first running passes that remove
dead control flow and inlines function calls.
This pass can be especially useful after running Local Access Chain
Conversion, which tends to cause cycles of dead code to be left after
Store/Load elimination passes are completed. These cycles cannot be
eliminated with standard dead code elimination.
Additionally: This transform uses a whitelist of instructions that it
knows do have side effects, (a.k.a. combinators). It assumes other
instructions have side effects: it will not remove them, and assumes
they have side effects via their ID operands.
A SSA local variable load/store elimination pass.
For every entry point function, eliminate all loads and stores of function
scope variables only referenced with non-access-chain loads and stores.
Eliminate the variables as well.
The presence of access chain references and function calls can inhibit
the above optimization.
Only shader modules with logical addressing are currently processed.
Currently modules with any extensions enabled are not processed. This
is left for future work.
This pass is most effective if preceeded by Inlining and
LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
will reduce the work that this pass has to do.