Some transformations (e.g. TransformationAddFunction) rely on running
the validator to decide whether the transformation is applicable. A
recent change allowed spirv-fuzz to take validator options, to cater
for the case where a module should be considered valid under
particular conditions. However, validation during the checking of
transformations had no access to these validator options.
This change introduced TransformationContext, which currently consists
of a fact manager and a set of validator options, but could in the
future have other fields corresponding to other objects that it is
useful to have access to when applying transformations. Now, instead
of checking and applying transformations in the context of a
FactManager, a TransformationContext is used. This gives access to
the fact manager as before, and also access to the validator options
when they are needed.
This introduces a new fuzzer pass to add instructions to the module
that define equations, and support in the fact manager for recording
equation facts and deducing synonym facts from equation facts.
Initially the only equations that are supported involve OpIAdd,
OpISub, OpSNegate and OpLogicalNot, but there is scope for adding
support for equations over various other operators.
This change adds fuzzer passes that sprinkle loads and stores into a
module at random, with stores restricted to occur in either dead
blocks, or to use pointers for which it is known that the pointee
value does not influence the module's overall behaviour.
The change also generalises the VariableValueIsArbitrary fact to
PointeeValueIsIrrelevant, to allow stores through access chains or
object copies of variables whose values are known to be irrelevant.
The change includes some other minor refactorings.
Prior to this change, TransformationReplaceIdWithSynonym was designed
to be able to replace an id with some synonymous data descriptor,
possibly necessitating extracting from a composite into a fresh id in
order to get at the synonymous data. This change simplifies things so
that TransformationReplaceIdWithSynonym just allows one id to be
replaced by another id. It is the responsibility of the associated
fuzzer pass - FuzzerPassApplyIdSynonyms - to perform the extraction
operations, using e.g. TransformationCompositeExtract.
When a data synonym fact about two composites is added, data synonym
facts between all sub-components of the composites are also added.
Furthermore, when data synonym facts been all sub-components of two
composites are known, a data synonym fact relating the two composites
is added. Identification of this case is done in a lazy manner, when
questions about data synonym facts are asked.
The change introduces helper methods to get the size of an array type
and the number of elements of a struct type, and fixes
TransformationCompositeExtract to invalidate analyses appropriately.
This change uses the recently-added equivalence relation class to
re-work the way synonyms between data values are managed by the fact
manager.
The tests for 'transformation_replace_id_with_synonym' have been
temporarily removed. This is because those tests are going to be
split into a number of test classes in an upcoming PR, once some other
refactorings have been applied, and it would be burdensome to
temporarily refactor all the tests to be in a working state for this
intermediate change.
A refactoring that separates the identification of an instruction from
the identification of a use in an instruction, to enable the former to
be used independently of the latter.
Adds a fuzzer pass and transformation to create a composite (array,
matrix, struct or vector) from available constituent components, and
inform the fact manager that each component of the new composite is
synonymous with the id that was used to construct it. This allows the
"replace id with synonym" pass to then replace uses of said ids with
uses of elements extracted from the composite.
Fixes#2858.
If the fuzzer's fact manager knows that ids A and B are synonymous, it
can replace a use of A with a use of B, so long as various conditions
hold (e.g. the definition of B must dominate the use of A, and it is
not legal to replace a use of an OpConstant in a struct's access chain
with a synonym that is not an OpConstant).
This change adds a fuzzer pass to sprinke such synonym replacements
through the module.