spirv-opt has a bug that `DebugInfoManager::AddDebugValueWithIndex()` does not
preserve `Indexes` operands of
[DebugValue](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugValue).
It has to preserve all of those `Indexes` operands, but it preserves only the first index
operand.
This PR removes `DebugInfoManager::AddDebugValueWithIndex()` and lets the spirv-opt
use `DebugInfoManager::AddDebugValueForDecl()`.
`DebugInfoManager::AddDebugValueForDecl()` preserves the Indexes operand correctly.
in 3943 the new tests should have failed, but didn't due to the AnyVUID
check not handling case with trailing whitespace. Added trimming to handle
it as easily might happen again in future
The front-end language compiler would simply emit DebugDeclare for
a variable when it is declared, which is effective through the variable's
scope. Since DebugDeclare only maps an OpVariable to a local variable,
the information can be removed when an optimization pass uses the
loaded value of the variable. DebugValue can be used to specify the
value of a variable. For each value update or phi instruction of a variable,
we can add DebugValue to help debugger inspect the variable at any
point of the program execution.
For example,
float a = 3;
... (complicated cfg) ...
foo(a); // <-- variable inspection: debugger can find DebugValue of `float a` in the nearest dominant
For the code with complicated CFG e.g., for-loop, if-statement, we
need help of ssa-rewrite to analyze the effective value of each variable
in each basic block.
If the value update of the variable happens only once and it dominates
all its uses, local-single-store-elim pass conducts the same value update
with ssa-rewrite and we have to let it add DebugValue for the value assignment.
One main issue is that we have to add DebugValue only when the value
update of a variable is visible to DebugDeclare. For example,
```
{ // scope1
%stack = OpVariable %ptr_int %int_3
{ // scope2
DebugDeclare %foo %stack <-- local variable "foo" in high-level language source code is declared as OpVariable "%stack"
// add DebugValue "foo = 3"
...
Store %stack %int_7 <-- foo = 7, add DebugValue "foo = 7"
...
// debugger can inspect the value of "foo"
}
Store %stack %int_11 <-- out of "scope2" i.e., scope of "foo". DO NOT add DebugValue "foo = 11"
}
```
However, the initalization of a variable is an exception.
For example, an argument passing of an inlined function must be done out of
the function's scope, but we must add a DebugValue for it.
```
// in HLSL
bar(float arg) { ... }
...
float foo = 3;
bar(foo);
// in SPIR-V
%arg = OpVariable
OpStore %arg %foo <-- Argument passing. Out of "float arg" scope, but we must add DebugValue for "float arg"
... body of function bar(float arg) ...
```
This PR handles the except case in local-single-store-elim pass. It adds
DebugValue for a store that is considered as an initialization.
The same exception handling code for ssa-rewrite is done by this commit: df4198e50e.
This fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/3873.
In the presence of variable pointers, the reaching definition may be
another pointer. For example, the following fragment:
%2 = OpVariable %_ptr_Input_float Input
%11 = OpVariable %_ptr_Function__ptr_Input_float Function
OpStore %11 %2
%12 = OpLoad %_ptr_Input_float %11
%13 = OpLoad %float %12
corresponds to the pseudo-code:
layout(location = 0) in flat float *%2
float %13;
float *%12;
float **%11;
*%11 = %2;
%12 = *%11;
%13 = *%12;
which ultimately, should correspond to:
%13 = *%2;
During rewriting, the pointer %12 is found to be replaceable by %2.
However, when processing the load %13 = *%12, the type of %12's reaching
definition is another float pointer (%2), instead of a float value.
When this happens, we need to continue looking up the reaching definition
chain until we get to a float value or a non-target var (i.e. a variable
that cannot be SSA replaced, like %2 in this case since it is a function
argument).
This PR fixes a bug related to the transformation applicability.
When the OpNot case was implemented, its opcode was not
added to the list of supported bit instructions in IsApplicable.
So, the changes made are the following.
- Add OpNot to the list of supported bit instructions.
- Update the tests.
This commit add support for optimizer to not inline functions with DontInline control flag, so that the [noinline] attribute in HLSL will be useful in DXC SPIR-V generation.
This is part of work of github.com/microsoft/DirectXShaderCompiler/issues/3158
Based on the OpLine spec, an OpLine instruction must be applied to
the instructions physically following it up to the first occurrence
of the next end of block, the next OpLine instruction, or the next
OpNoLine instruction.
```
OpLine %file 0 0
OpNoLine
OpLine %file 1 1
OpStore %foo %int_1
%value = OpLoad %int %foo
OpLine %file 2 2
```
For the above code, the current spirv-opt keeps three line
instructions `OpLine %file 0 0`, `OpNoLine`, and `OpLine %file 1 1`
in `std::vector<Instruction> dbg_line_insts_` of Instruction class
for `OpStore %foo %int_1`. It does not put any line instruction to
`std::vector<Instruction> dbg_line_insts_` of
`%value = OpLoad %int %foo` even though `OpLine %file 1 1` must be
applied to `%value = OpLoad %int %foo` based on the spec.
This results in the missing line information for
`%value = OpLoad %int %foo` while each spirv-opt pass optimizes the
code. We have to put `OpLine %file 1 1` to
`std::vector<Instruction> dbg_line_insts_` of
both `%value = OpLoad %int %foo` and `OpStore %foo %int_1`.
This commit conducts the line instruction propagation and skips
emitting the eliminated line instructions at the end, which are the same
with PropagateLineInfoPass and RedundantLineInfoElimPass. This
commit removes PropagateLineInfoPass and RedundantLineInfoElimPass.
KhronosGroup/glslang#2440 is a related PR that stop using
PropagateLineInfoPass and RedundantLineInfoElimPass from glslang.
When the code in this PR applied, the glslang tests will pass.
If enabled the following targets will be created:
* `${SPIRV_TOOLS}-static` - `STATIC` library. Has full public symbol visibility.
* `${SPIRV_TOOLS}-shared` - `SHARED` library. Has default-hidden symbol visibility.
* `${SPIRV_TOOLS}` - will alias to one of above, based on BUILD_SHARED_LIBS.
If disabled the following targets will be created:
* `${SPIRV_TOOLS}` - either `STATIC` or `SHARED` based on the new `SPIRV_TOOLS_LIBRARY_TYPE` flag. Has full public symbol visibility.
* `${SPIRV_TOOLS}-shared` - `SHARED` library. Has default-hidden symbol visibility.
Defaults to `ON`, matching existing build behavior.
This flag can be used by package maintainers to ensure that all libraries are built as shared objects.
* spirv-val: Allow the ViewportIndex and Layer built-ins when their corresponding SPIR-V 1.5 capabilities are present
* Added tests for OpCapability ShaderViewportIndex and OpCapability ShaderLayer
For some cases, we have DebugDecl invisible to a value assignment, but
the value assignment information is important i.e., debugger cannot inspect
the variable without the information. For example, a parameter of an inlined
function must have its value assignment i.e., argument passing out of its
function scope. If we simply remove DebugDecl because it is invisible to the
argument passing, we cannot inspec the variable.
This PR
- Adds DebugValue for DebugDecl invisible to a value assignment. We use
the value of the variable in the basic block that contains DebugDecl, which is
found by ssa-rewrite. If the value instruction does not dominate DebugDecl,
we use the value of the variable in the immediate dominator of the basic block.
- Checks the visibility of DebugDecl for Phi value assignment based on the
all value operands of the Phi. Since Phi just references multiple values from
multiple basic blocks, scopes of value operands must be regarded as the scope
of the Phi.
The following implementations are introduced:
- Transformation and fuzzer pass for expanding vector reduction.
- Unit tests to cover the instructions with different vector sizes.
Fixes#3768.
This fixes a problem where TransformationInlineFunction could lead to
distinct instructions having identical unique ids. It adds a validity
check to detect this problem in general.
Fixes#3911.
`DebugInfoManager::AddDebugValueIfVarDeclIsVisible()` adds
OpenCL.DebugInfo.100 DebugValue from DebugDeclare only when the
DebugDeclare is visible to the give scope. It helps us correctly
handle a reference variable e.g.,
{ // scope #1.
int foo = /* init */;
{ // scope #2.
int& bar = foo;
...
in the above code, we must not propagate DebugValue of `int& bar` for
store instructions in the scope #1 because it is alive only in
the scope #2.
We have an exception: If the given DebugDeclare is used for a function
parameter, `DebugInfoManager::AddDebugValueIfVarDeclIsVisible()` has
to always add DebugValue instruction regardless
of the scope. It is because the initializer (store instruction) for
the function parameter can be out of the function parameter's scope
(the function) in particular when the function was inlined.
Without this change, the function parameter value information always
disappears whenever we run the function inlining pass and
`DebugInfoManager::AddDebugValueIfVarDeclIsVisible()`.
The validity check during fuzzing and in unit tests is strengthened to
require that every block has its enclosing function as its parent.
TransformationMergeFunctionReturns is fixed so that it ensures parents
are set appropriately.
Fixes#3907.