// Copyright (c) 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/fuzz/call_graph.h" #include namespace spvtools { namespace fuzz { CallGraph::CallGraph(opt::IRContext* context) { // Initialize function in-degree, call graph edges and corresponding maximum // loop nesting depth to 0, empty and 0 respectively. for (auto& function : *context->module()) { function_in_degree_[function.result_id()] = 0; call_graph_edges_[function.result_id()] = std::set(); function_max_loop_nesting_depth_[function.result_id()] = 0; } // Record the maximum loop nesting depth for each edge, by keeping a map from // pairs of function ids, where (A, B) represents a function call from A to B, // to the corresponding maximum depth. std::map, uint32_t> call_to_max_depth; // Compute |function_in_degree_|, |call_graph_edges_| and |call_to_max_depth|. BuildGraphAndGetDepthOfFunctionCalls(context, &call_to_max_depth); // Compute |functions_in_topological_order_|. ComputeTopologicalOrderOfFunctions(); // Compute |function_max_loop_nesting_depth_|. ComputeInterproceduralFunctionCallDepths(call_to_max_depth); } void CallGraph::BuildGraphAndGetDepthOfFunctionCalls( opt::IRContext* context, std::map, uint32_t>* call_to_max_depth) { // Consider every function. for (auto& function : *context->module()) { // Avoid considering the same callee of this function multiple times by // recording known callees. std::set known_callees; // Consider every function call instruction in every block. for (auto& block : function) { for (auto& instruction : block) { if (instruction.opcode() != SpvOpFunctionCall) { continue; } // Get the id of the function being called. uint32_t callee = instruction.GetSingleWordInOperand(0); // Get the loop nesting depth of this function call. uint32_t loop_nesting_depth = context->GetStructuredCFGAnalysis()->LoopNestingDepth(block.id()); // If inside a loop header, consider the function call nested inside the // loop headed by the block. if (block.IsLoopHeader()) { loop_nesting_depth++; } // Update the map if we have not seen this pair (caller, callee) // before or if this function call is from a greater depth. if (!known_callees.count(callee) || call_to_max_depth->at({function.result_id(), callee}) < loop_nesting_depth) { call_to_max_depth->insert( {{function.result_id(), callee}, loop_nesting_depth}); } if (known_callees.count(callee)) { // We have already considered a call to this function - ignore it. continue; } // Increase the callee's in-degree and add an edge to the call graph. function_in_degree_[callee]++; call_graph_edges_[function.result_id()].insert(callee); // Mark the callee as 'known'. known_callees.insert(callee); } } } } void CallGraph::ComputeTopologicalOrderOfFunctions() { // This is an implementation of Kahn’s algorithm for topological sorting. // Initialise |functions_in_topological_order_|. functions_in_topological_order_.clear(); // Get a copy of the initial in-degrees of all functions. The algorithm // involves decrementing these values, hence why we work on a copy. std::map function_in_degree = GetFunctionInDegree(); // Populate a queue with all those function ids with in-degree zero. std::queue queue; for (auto& entry : function_in_degree) { if (entry.second == 0) { queue.push(entry.first); } } // Pop ids from the queue, adding them to the sorted order and decreasing the // in-degrees of their successors. A successor who's in-degree becomes zero // gets added to the queue. while (!queue.empty()) { auto next = queue.front(); queue.pop(); functions_in_topological_order_.push_back(next); for (auto successor : GetDirectCallees(next)) { assert(function_in_degree.at(successor) > 0 && "The in-degree cannot be zero if the function is a successor."); function_in_degree[successor] = function_in_degree.at(successor) - 1; if (function_in_degree.at(successor) == 0) { queue.push(successor); } } } assert(functions_in_topological_order_.size() == function_in_degree.size() && "Every function should appear in the sort."); return; } void CallGraph::ComputeInterproceduralFunctionCallDepths( const std::map, uint32_t>& call_to_max_depth) { // Find the maximum loop nesting depth that each function can be // called from, by considering them in topological order. for (uint32_t function_id : functions_in_topological_order_) { const auto& callees = call_graph_edges_[function_id]; // For each callee, update its maximum loop nesting depth, if a call from // |function_id| increases it. for (uint32_t callee : callees) { uint32_t max_depth_from_this_function = function_max_loop_nesting_depth_[function_id] + call_to_max_depth.at({function_id, callee}); if (function_max_loop_nesting_depth_[callee] < max_depth_from_this_function) { function_max_loop_nesting_depth_[callee] = max_depth_from_this_function; } } } } void CallGraph::PushDirectCallees(uint32_t function_id, std::queue* queue) const { for (auto callee : GetDirectCallees(function_id)) { queue->push(callee); } } std::set CallGraph::GetIndirectCallees(uint32_t function_id) const { std::set result; std::queue queue; PushDirectCallees(function_id, &queue); while (!queue.empty()) { auto next = queue.front(); queue.pop(); if (result.count(next)) { continue; } result.insert(next); PushDirectCallees(next, &queue); } return result; } } // namespace fuzz } // namespace spvtools