// Copyright (c) 2017 The Khronos Group Inc. // Copyright (c) 2017 Valve Corporation // Copyright (c) 2017 LunarG Inc. // Copyright (c) 2018 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "dead_branch_elim_pass.h" #include "cfa.h" #include "ir_context.h" #include "iterator.h" #include "make_unique.h" namespace spvtools { namespace opt { namespace { const uint32_t kBranchCondTrueLabIdInIdx = 1; const uint32_t kBranchCondFalseLabIdInIdx = 2; } // anonymous namespace bool DeadBranchElimPass::GetConstCondition(uint32_t condId, bool* condVal) { bool condIsConst; ir::Instruction* cInst = get_def_use_mgr()->GetDef(condId); switch (cInst->opcode()) { case SpvOpConstantFalse: { *condVal = false; condIsConst = true; } break; case SpvOpConstantTrue: { *condVal = true; condIsConst = true; } break; case SpvOpLogicalNot: { bool negVal; condIsConst = GetConstCondition(cInst->GetSingleWordInOperand(0), &negVal); if (condIsConst) *condVal = !negVal; } break; default: { condIsConst = false; } break; } return condIsConst; } bool DeadBranchElimPass::GetConstInteger(uint32_t selId, uint32_t* selVal) { ir::Instruction* sInst = get_def_use_mgr()->GetDef(selId); uint32_t typeId = sInst->type_id(); ir::Instruction* typeInst = get_def_use_mgr()->GetDef(typeId); if (!typeInst || (typeInst->opcode() != SpvOpTypeInt)) return false; // TODO(greg-lunarg): Support non-32 bit ints if (typeInst->GetSingleWordInOperand(0) != 32) return false; if (sInst->opcode() == SpvOpConstant) { *selVal = sInst->GetSingleWordInOperand(0); return true; } else if (sInst->opcode() == SpvOpConstantNull) { *selVal = 0; return true; } return false; } void DeadBranchElimPass::AddBranch(uint32_t labelId, ir::BasicBlock* bp) { assert(get_def_use_mgr()->GetDef(labelId) != nullptr); std::unique_ptr newBranch(new ir::Instruction( context(), SpvOpBranch, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {labelId}}})); get_def_use_mgr()->AnalyzeInstDefUse(&*newBranch); bp->AddInstruction(std::move(newBranch)); } ir::BasicBlock* DeadBranchElimPass::GetParentBlock(uint32_t id) { return context()->get_instr_block(get_def_use_mgr()->GetDef(id)); } bool DeadBranchElimPass::MarkLiveBlocks( ir::Function* func, std::unordered_set* live_blocks) { std::unordered_set continues; std::vector stack; stack.push_back(&*func->begin()); bool modified = false; while (!stack.empty()) { ir::BasicBlock* block = stack.back(); stack.pop_back(); // Live blocks doubles as visited set. if (!live_blocks->insert(block).second) continue; uint32_t cont_id = block->ContinueBlockIdIfAny(); if (cont_id != 0) continues.insert(GetParentBlock(cont_id)); ir::Instruction* terminator = block->terminator(); uint32_t live_lab_id = 0; // Check if the terminator has a single valid successor. if (terminator->opcode() == SpvOpBranchConditional) { bool condVal; if (GetConstCondition(terminator->GetSingleWordInOperand(0u), &condVal)) { live_lab_id = terminator->GetSingleWordInOperand( condVal ? kBranchCondTrueLabIdInIdx : kBranchCondFalseLabIdInIdx); } } else if (terminator->opcode() == SpvOpSwitch) { uint32_t sel_val; if (GetConstInteger(terminator->GetSingleWordInOperand(0u), &sel_val)) { // Search switch operands for selector value, set live_lab_id to // corresponding label, use default if not found. uint32_t icnt = 0; uint32_t case_val; terminator->WhileEachInOperand( [&icnt, &case_val, &sel_val, &live_lab_id](const uint32_t* idp) { if (icnt == 1) { // Start with default label. live_lab_id = *idp; } else if (icnt > 1) { if (icnt % 2 == 0) { case_val = *idp; } else { if (case_val == sel_val) { live_lab_id = *idp; return false; } } } ++icnt; return true; }); } } // Don't simplify branches of continue blocks. A path from the continue to // the header is required. // TODO(alan-baker): They can be simplified iff there remains a path to the // backedge. Structured control flow should guarantee one path hits the // backedge, but I've removed the requirement for structured control flow // from this pass. bool simplify = live_lab_id != 0 && !continues.count(block); if (simplify) { modified = true; // Replace with unconditional branch. // Remove the merge instruction if it is a selection merge. AddBranch(live_lab_id, block); context()->KillInst(terminator); ir::Instruction* mergeInst = block->GetMergeInst(); if (mergeInst && mergeInst->opcode() == SpvOpSelectionMerge) { context()->KillInst(mergeInst); } stack.push_back(GetParentBlock(live_lab_id)); } else { // All successors are live. const auto* const_block = block; const_block->ForEachSuccessorLabel([&stack, this](const uint32_t label) { stack.push_back(GetParentBlock(label)); }); } } return modified; } void DeadBranchElimPass::MarkUnreachableStructuredTargets( const std::unordered_set& live_blocks, std::unordered_set* unreachable_merges, std::unordered_map* unreachable_continues) { for (auto block : live_blocks) { if (auto merge_id = block->MergeBlockIdIfAny()) { ir::BasicBlock* merge_block = GetParentBlock(merge_id); if (!live_blocks.count(merge_block)) { unreachable_merges->insert(merge_block); } if (auto cont_id = block->ContinueBlockIdIfAny()) { ir::BasicBlock* cont_block = GetParentBlock(cont_id); if (!live_blocks.count(cont_block)) { (*unreachable_continues)[cont_block] = block; } } } } } bool DeadBranchElimPass::FixPhiNodesInLiveBlocks( ir::Function* func, const std::unordered_set& live_blocks, const std::unordered_map& unreachable_continues) { bool modified = false; for (auto& block : *func) { if (live_blocks.count(&block)) { for (auto iter = block.begin(); iter != block.end();) { if (iter->opcode() != SpvOpPhi) { break; } bool changed = false; bool backedge_added = false; ir::Instruction* inst = &*iter; std::vector operands; // Build a complete set of operands (not just input operands). Start // with type and result id operands. operands.push_back(inst->GetOperand(0u)); operands.push_back(inst->GetOperand(1u)); // Iterate through the incoming labels and determine which to keep // and/or modify. If there in an unreachable continue block, there will // be an edge from that block to the header. We need to keep it to // maintain the structured control flow. If the header has more that 2 // incoming edges, then the OpPhi must have an entry for that edge. // However, if there is only one other incoming edge, the OpPhi can be // eliminated. for (uint32_t i = 1; i < inst->NumInOperands(); i += 2) { ir::BasicBlock* inc = GetParentBlock(inst->GetSingleWordInOperand(i)); auto cont_iter = unreachable_continues.find(inc); if (cont_iter != unreachable_continues.end() && cont_iter->second == &block && inst->NumInOperands() > 4) { if (get_def_use_mgr() ->GetDef(inst->GetSingleWordInOperand(i - 1)) ->opcode() == SpvOpUndef) { // Already undef incoming value, no change necessary. operands.push_back(inst->GetInOperand(i - 1)); operands.push_back(inst->GetInOperand(i)); backedge_added = true; } else { // Replace incoming value with undef if this phi exists in the // loop header. Otherwise, this edge is not live since the // unreachable continue block will be replaced with an // unconditional branch to the header only. operands.emplace_back( SPV_OPERAND_TYPE_ID, std::initializer_list{Type2Undef(inst->type_id())}); operands.push_back(inst->GetInOperand(i)); changed = true; backedge_added = true; } } else if (live_blocks.count(inc) && inc->IsSuccessor(&block)) { // Keep live incoming edge. operands.push_back(inst->GetInOperand(i - 1)); operands.push_back(inst->GetInOperand(i)); } else { // Remove incoming edge. changed = true; } } if (changed) { modified = true; uint32_t continue_id = block.ContinueBlockIdIfAny(); if (!backedge_added && continue_id != 0 && unreachable_continues.count(GetParentBlock(continue_id)) && operands.size() > 4) { // Changed the backedge to branch from the continue block instead // of a successor of the continue block. Add an entry to the phi to // provide an undef for the continue block. Since the successor of // the continue must also be unreachable (dominated by the continue // block), any entry for the original backedge has been removed // from the phi operands. operands.emplace_back( SPV_OPERAND_TYPE_ID, std::initializer_list{Type2Undef(inst->type_id())}); operands.emplace_back(SPV_OPERAND_TYPE_ID, std::initializer_list{continue_id}); } // Either replace the phi with a single value or rebuild the phi out // of |operands|. // // We always have type and result id operands. So this phi has a // single source if there are two more operands beyond those. if (operands.size() == 4) { // First input data operands is at index 2. uint32_t replId = operands[2u].words[0]; context()->ReplaceAllUsesWith(inst->result_id(), replId); iter = context()->KillInst(&*inst); } else { // We've rewritten the operands, so first instruct the def/use // manager to forget uses in the phi before we replace them. After // replacing operands update the def/use manager by re-analyzing // the used ids in this phi. get_def_use_mgr()->EraseUseRecordsOfOperandIds(inst); inst->ReplaceOperands(operands); get_def_use_mgr()->AnalyzeInstUse(inst); ++iter; } } else { ++iter; } } } } return modified; } bool DeadBranchElimPass::EraseDeadBlocks( ir::Function* func, const std::unordered_set& live_blocks, const std::unordered_set& unreachable_merges, const std::unordered_map& unreachable_continues) { bool modified = false; for (auto ebi = func->begin(); ebi != func->end();) { if (unreachable_merges.count(&*ebi)) { if (ebi->begin() != ebi->tail() || ebi->terminator()->opcode() != SpvOpUnreachable) { // Make unreachable, but leave the label. KillAllInsts(&*ebi, false); // Add unreachable terminator. ebi->AddInstruction( MakeUnique(context(), SpvOpUnreachable, 0, 0, std::initializer_list{})); modified = true; } ++ebi; } else if (unreachable_continues.count(&*ebi)) { uint32_t cont_id = unreachable_continues.find(&*ebi)->second->id(); if (ebi->begin() != ebi->tail() || ebi->terminator()->opcode() != SpvOpBranch || ebi->terminator()->GetSingleWordInOperand(0u) != cont_id) { // Make unreachable, but leave the label. KillAllInsts(&*ebi, false); // Add unconditional branch to header. assert(unreachable_continues.count(&*ebi)); ebi->AddInstruction( MakeUnique(context(), SpvOpBranch, 0, 0, std::initializer_list{ {SPV_OPERAND_TYPE_ID, {cont_id}}})); get_def_use_mgr()->AnalyzeInstUse(&*ebi->tail()); modified = true; } ++ebi; } else if (!live_blocks.count(&*ebi)) { // Kill this block. KillAllInsts(&*ebi); ebi = ebi.Erase(); modified = true; } else { ++ebi; } } return modified; } bool DeadBranchElimPass::EliminateDeadBranches(ir::Function* func) { bool modified = false; std::unordered_set live_blocks; modified |= MarkLiveBlocks(func, &live_blocks); std::unordered_set unreachable_merges; std::unordered_map unreachable_continues; MarkUnreachableStructuredTargets(live_blocks, &unreachable_merges, &unreachable_continues); modified |= FixPhiNodesInLiveBlocks(func, live_blocks, unreachable_continues); modified |= EraseDeadBlocks(func, live_blocks, unreachable_merges, unreachable_continues); return modified; } void DeadBranchElimPass::Initialize(ir::IRContext* c) { InitializeProcessing(c); // Initialize extension whitelist InitExtensions(); }; bool DeadBranchElimPass::AllExtensionsSupported() const { // If any extension not in whitelist, return false for (auto& ei : get_module()->extensions()) { const char* extName = reinterpret_cast(&ei.GetInOperand(0).words[0]); if (extensions_whitelist_.find(extName) == extensions_whitelist_.end()) return false; } return true; } Pass::Status DeadBranchElimPass::ProcessImpl() { // Do not process if module contains OpGroupDecorate. Additional // support required in KillNamesAndDecorates(). // TODO(greg-lunarg): Add support for OpGroupDecorate for (auto& ai : get_module()->annotations()) if (ai.opcode() == SpvOpGroupDecorate) return Status::SuccessWithoutChange; // Do not process if any disallowed extensions are enabled if (!AllExtensionsSupported()) return Status::SuccessWithoutChange; // Process all entry point functions ProcessFunction pfn = [this](ir::Function* fp) { return EliminateDeadBranches(fp); }; bool modified = ProcessReachableCallTree(pfn, context()); return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange; } DeadBranchElimPass::DeadBranchElimPass() {} Pass::Status DeadBranchElimPass::Process(ir::IRContext* module) { Initialize(module); return ProcessImpl(); } void DeadBranchElimPass::InitExtensions() { extensions_whitelist_.clear(); extensions_whitelist_.insert({ "SPV_AMD_shader_explicit_vertex_parameter", "SPV_AMD_shader_trinary_minmax", "SPV_AMD_gcn_shader", "SPV_KHR_shader_ballot", "SPV_AMD_shader_ballot", "SPV_AMD_gpu_shader_half_float", "SPV_KHR_shader_draw_parameters", "SPV_KHR_subgroup_vote", "SPV_KHR_16bit_storage", "SPV_KHR_device_group", "SPV_KHR_multiview", "SPV_NVX_multiview_per_view_attributes", "SPV_NV_viewport_array2", "SPV_NV_stereo_view_rendering", "SPV_NV_sample_mask_override_coverage", "SPV_NV_geometry_shader_passthrough", "SPV_AMD_texture_gather_bias_lod", "SPV_KHR_storage_buffer_storage_class", "SPV_KHR_variable_pointers", "SPV_AMD_gpu_shader_int16", "SPV_KHR_post_depth_coverage", "SPV_KHR_shader_atomic_counter_ops", }); } } // namespace opt } // namespace spvtools