// Copyright (c) 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "assembly_builder.h" #include "function_utils.h" #include "pass_fixture.h" #include "pass_utils.h" #include "opt/iterator.h" #include "opt/loop_descriptor.h" #include "opt/pass.h" #include "opt/scalar_analysis.h" #include "opt/tree_iterator.h" namespace { using namespace spvtools; using ::testing::UnorderedElementsAre; using ScalarAnalysisTest = PassTest<::testing::Test>; /* Generated from the following GLSL + --eliminate-local-multi-store #version 410 core layout (location = 1) out float array[10]; void main() { for (int i = 0; i < 10; ++i) { array[i] = array[i+1]; } } */ TEST_F(ScalarAnalysisTest, BasicEvolutionTest) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %4 "main" %24 OpExecutionMode %4 OriginUpperLeft OpSource GLSL 410 OpName %4 "main" OpName %24 "array" OpDecorate %24 Location 1 %2 = OpTypeVoid %3 = OpTypeFunction %2 %6 = OpTypeInt 32 1 %7 = OpTypePointer Function %6 %9 = OpConstant %6 0 %16 = OpConstant %6 10 %17 = OpTypeBool %19 = OpTypeFloat 32 %20 = OpTypeInt 32 0 %21 = OpConstant %20 10 %22 = OpTypeArray %19 %21 %23 = OpTypePointer Output %22 %24 = OpVariable %23 Output %27 = OpConstant %6 1 %29 = OpTypePointer Output %19 %4 = OpFunction %2 None %3 %5 = OpLabel OpBranch %10 %10 = OpLabel %35 = OpPhi %6 %9 %5 %34 %13 OpLoopMerge %12 %13 None OpBranch %14 %14 = OpLabel %18 = OpSLessThan %17 %35 %16 OpBranchConditional %18 %11 %12 %11 = OpLabel %28 = OpIAdd %6 %35 %27 %30 = OpAccessChain %29 %24 %28 %31 = OpLoad %19 %30 %32 = OpAccessChain %29 %24 %35 OpStore %32 %31 OpBranch %13 %13 = OpLabel %34 = OpIAdd %6 %35 %27 OpBranch %10 %12 = OpLabel OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 4); opt::ScalarEvolutionAnalysis analysis{context.get()}; const ir::Instruction* store = nullptr; const ir::Instruction* load = nullptr; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 11)) { if (inst.opcode() == SpvOp::SpvOpStore) { store = &inst; } if (inst.opcode() == SpvOp::SpvOpLoad) { load = &inst; } } EXPECT_NE(load, nullptr); EXPECT_NE(store, nullptr); ir::Instruction* access_chain = context->get_def_use_mgr()->GetDef(load->GetSingleWordInOperand(0)); ir::Instruction* child = context->get_def_use_mgr()->GetDef( access_chain->GetSingleWordInOperand(1)); const opt::SENode* node = analysis.AnalyzeInstruction(child); EXPECT_NE(node, nullptr); // Unsimplified node should have the form of ADD(REC(0,1), 1) EXPECT_EQ(node->GetType(), opt::SENode::Add); const opt::SENode* child_1 = node->GetChild(0); EXPECT_TRUE(child_1->GetType() == opt::SENode::Constant || child_1->GetType() == opt::SENode::RecurrentAddExpr); const opt::SENode* child_2 = node->GetChild(1); EXPECT_TRUE(child_2->GetType() == opt::SENode::Constant || child_2->GetType() == opt::SENode::RecurrentAddExpr); opt::SENode* simplified = analysis.SimplifyExpression(const_cast(node)); // Simplified should be in the form of REC(1,1) EXPECT_EQ(simplified->GetType(), opt::SENode::RecurrentAddExpr); EXPECT_EQ(simplified->GetChild(0)->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified->GetChild(0)->AsSEConstantNode()->FoldToSingleValue(), 1); EXPECT_EQ(simplified->GetChild(1)->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified->GetChild(1)->AsSEConstantNode()->FoldToSingleValue(), 1); EXPECT_EQ(simplified->GetChild(0), simplified->GetChild(1)); } /* Generated from the following GLSL + --eliminate-local-multi-store #version 410 core layout (location = 1) out float array[10]; layout (location = 2) flat in int loop_invariant; void main() { for (int i = 0; i < 10; ++i) { array[i] = array[i+loop_invariant]; } } */ TEST_F(ScalarAnalysisTest, LoadTest) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" %3 %4 OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpName %2 "main" OpName %3 "array" OpName %4 "loop_invariant" OpDecorate %3 Location 1 OpDecorate %4 Flat OpDecorate %4 Location 2 %5 = OpTypeVoid %6 = OpTypeFunction %5 %7 = OpTypeInt 32 1 %8 = OpTypePointer Function %7 %9 = OpConstant %7 0 %10 = OpConstant %7 10 %11 = OpTypeBool %12 = OpTypeFloat 32 %13 = OpTypeInt 32 0 %14 = OpConstant %13 10 %15 = OpTypeArray %12 %14 %16 = OpTypePointer Output %15 %3 = OpVariable %16 Output %17 = OpTypePointer Input %7 %4 = OpVariable %17 Input %18 = OpTypePointer Output %12 %19 = OpConstant %7 1 %2 = OpFunction %5 None %6 %20 = OpLabel OpBranch %21 %21 = OpLabel %22 = OpPhi %7 %9 %20 %23 %24 OpLoopMerge %25 %24 None OpBranch %26 %26 = OpLabel %27 = OpSLessThan %11 %22 %10 OpBranchConditional %27 %28 %25 %28 = OpLabel %29 = OpLoad %7 %4 %30 = OpIAdd %7 %22 %29 %31 = OpAccessChain %18 %3 %30 %32 = OpLoad %12 %31 %33 = OpAccessChain %18 %3 %22 OpStore %33 %32 OpBranch %24 %24 = OpLabel %23 = OpIAdd %7 %22 %19 OpBranch %21 %25 = OpLabel OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 2); opt::ScalarEvolutionAnalysis analysis{context.get()}; const ir::Instruction* load = nullptr; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 28)) { if (inst.opcode() == SpvOp::SpvOpLoad) { load = &inst; } } EXPECT_NE(load, nullptr); ir::Instruction* access_chain = context->get_def_use_mgr()->GetDef(load->GetSingleWordInOperand(0)); ir::Instruction* child = context->get_def_use_mgr()->GetDef( access_chain->GetSingleWordInOperand(1)); // const opt::SENode* node = // analysis.GetNodeFromInstruction(child->unique_id()); const opt::SENode* node = analysis.AnalyzeInstruction(child); EXPECT_NE(node, nullptr); // Unsimplified node should have the form of ADD(REC(0,1), X) EXPECT_EQ(node->GetType(), opt::SENode::Add); const opt::SENode* child_1 = node->GetChild(0); EXPECT_TRUE(child_1->GetType() == opt::SENode::ValueUnknown || child_1->GetType() == opt::SENode::RecurrentAddExpr); const opt::SENode* child_2 = node->GetChild(1); EXPECT_TRUE(child_2->GetType() == opt::SENode::ValueUnknown || child_2->GetType() == opt::SENode::RecurrentAddExpr); opt::SENode* simplified = analysis.SimplifyExpression(const_cast(node)); EXPECT_EQ(simplified->GetType(), opt::SENode::RecurrentAddExpr); const opt::SERecurrentNode* rec = simplified->AsSERecurrentNode(); EXPECT_NE(rec->GetChild(0), rec->GetChild(1)); EXPECT_EQ(rec->GetOffset()->GetType(), opt::SENode::ValueUnknown); EXPECT_EQ(rec->GetCoefficient()->GetType(), opt::SENode::Constant); EXPECT_EQ(rec->GetCoefficient()->AsSEConstantNode()->FoldToSingleValue(), 1u); } /* Generated from the following GLSL + --eliminate-local-multi-store #version 410 core layout (location = 1) out float array[10]; layout (location = 2) flat in int loop_invariant; void main() { array[0] = array[loop_invariant * 2 + 4 + 5 - 24 - loop_invariant - loop_invariant+ 16 * 3]; } */ TEST_F(ScalarAnalysisTest, SimplifySimple) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" %3 %4 OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpName %2 "main" OpName %3 "array" OpName %4 "loop_invariant" OpDecorate %3 Location 1 OpDecorate %4 Flat OpDecorate %4 Location 2 %5 = OpTypeVoid %6 = OpTypeFunction %5 %7 = OpTypeFloat 32 %8 = OpTypeInt 32 0 %9 = OpConstant %8 10 %10 = OpTypeArray %7 %9 %11 = OpTypePointer Output %10 %3 = OpVariable %11 Output %12 = OpTypeInt 32 1 %13 = OpConstant %12 0 %14 = OpTypePointer Input %12 %4 = OpVariable %14 Input %15 = OpConstant %12 2 %16 = OpConstant %12 4 %17 = OpConstant %12 5 %18 = OpConstant %12 24 %19 = OpConstant %12 48 %20 = OpTypePointer Output %7 %2 = OpFunction %5 None %6 %21 = OpLabel %22 = OpLoad %12 %4 %23 = OpIMul %12 %22 %15 %24 = OpIAdd %12 %23 %16 %25 = OpIAdd %12 %24 %17 %26 = OpISub %12 %25 %18 %28 = OpISub %12 %26 %22 %30 = OpISub %12 %28 %22 %31 = OpIAdd %12 %30 %19 %32 = OpAccessChain %20 %3 %31 %33 = OpLoad %7 %32 %34 = OpAccessChain %20 %3 %13 OpStore %34 %33 OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 2); opt::ScalarEvolutionAnalysis analysis{context.get()}; const ir::Instruction* load = nullptr; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 21)) { if (inst.opcode() == SpvOp::SpvOpLoad && inst.result_id() == 33) { load = &inst; } } EXPECT_NE(load, nullptr); ir::Instruction* access_chain = context->get_def_use_mgr()->GetDef(load->GetSingleWordInOperand(0)); ir::Instruction* child = context->get_def_use_mgr()->GetDef( access_chain->GetSingleWordInOperand(1)); const opt::SENode* node = analysis.AnalyzeInstruction(child); // Unsimplified is a very large graph with an add at the top. EXPECT_NE(node, nullptr); EXPECT_EQ(node->GetType(), opt::SENode::Add); // Simplified node should resolve down to a constant expression as the loads // will eliminate themselves. opt::SENode* simplified = analysis.SimplifyExpression(const_cast(node)); EXPECT_EQ(simplified->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified->AsSEConstantNode()->FoldToSingleValue(), 33u); } /* Generated from the following GLSL + --eliminate-local-multi-store #version 410 core layout(location = 0) in vec4 c; layout (location = 1) out float array[10]; void main() { int N = int(c.x); for (int i = 0; i < 10; ++i) { array[i] = array[i]; array[i] = array[i-1]; array[i] = array[i+1]; array[i+1] = array[i+1]; array[i+N] = array[i+N]; array[i] = array[i+N]; } } */ TEST_F(ScalarAnalysisTest, Simplify) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %4 "main" %12 %33 OpExecutionMode %4 OriginUpperLeft OpSource GLSL 410 OpName %4 "main" OpName %8 "N" OpName %12 "c" OpName %19 "i" OpName %33 "array" OpDecorate %12 Location 0 OpDecorate %33 Location 1 %2 = OpTypeVoid %3 = OpTypeFunction %2 %6 = OpTypeInt 32 1 %7 = OpTypePointer Function %6 %9 = OpTypeFloat 32 %10 = OpTypeVector %9 4 %11 = OpTypePointer Input %10 %12 = OpVariable %11 Input %13 = OpTypeInt 32 0 %14 = OpConstant %13 0 %15 = OpTypePointer Input %9 %20 = OpConstant %6 0 %27 = OpConstant %6 10 %28 = OpTypeBool %30 = OpConstant %13 10 %31 = OpTypeArray %9 %30 %32 = OpTypePointer Output %31 %33 = OpVariable %32 Output %36 = OpTypePointer Output %9 %42 = OpConstant %6 1 %4 = OpFunction %2 None %3 %5 = OpLabel %8 = OpVariable %7 Function %19 = OpVariable %7 Function %16 = OpAccessChain %15 %12 %14 %17 = OpLoad %9 %16 %18 = OpConvertFToS %6 %17 OpStore %8 %18 OpStore %19 %20 OpBranch %21 %21 = OpLabel %78 = OpPhi %6 %20 %5 %77 %24 OpLoopMerge %23 %24 None OpBranch %25 %25 = OpLabel %29 = OpSLessThan %28 %78 %27 OpBranchConditional %29 %22 %23 %22 = OpLabel %37 = OpAccessChain %36 %33 %78 %38 = OpLoad %9 %37 %39 = OpAccessChain %36 %33 %78 OpStore %39 %38 %43 = OpISub %6 %78 %42 %44 = OpAccessChain %36 %33 %43 %45 = OpLoad %9 %44 %46 = OpAccessChain %36 %33 %78 OpStore %46 %45 %49 = OpIAdd %6 %78 %42 %50 = OpAccessChain %36 %33 %49 %51 = OpLoad %9 %50 %52 = OpAccessChain %36 %33 %78 OpStore %52 %51 %54 = OpIAdd %6 %78 %42 %56 = OpIAdd %6 %78 %42 %57 = OpAccessChain %36 %33 %56 %58 = OpLoad %9 %57 %59 = OpAccessChain %36 %33 %54 OpStore %59 %58 %62 = OpIAdd %6 %78 %18 %65 = OpIAdd %6 %78 %18 %66 = OpAccessChain %36 %33 %65 %67 = OpLoad %9 %66 %68 = OpAccessChain %36 %33 %62 OpStore %68 %67 %72 = OpIAdd %6 %78 %18 %73 = OpAccessChain %36 %33 %72 %74 = OpLoad %9 %73 %75 = OpAccessChain %36 %33 %78 OpStore %75 %74 OpBranch %24 %24 = OpLabel %77 = OpIAdd %6 %78 %42 OpStore %19 %77 OpBranch %21 %23 = OpLabel OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 4); opt::ScalarEvolutionAnalysis analysis{context.get()}; const ir::Instruction* loads[6]; const ir::Instruction* stores[6]; int load_count = 0; int store_count = 0; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 22)) { if (inst.opcode() == SpvOp::SpvOpLoad) { loads[load_count] = &inst; ++load_count; } if (inst.opcode() == SpvOp::SpvOpStore) { stores[store_count] = &inst; ++store_count; } } EXPECT_EQ(load_count, 6); EXPECT_EQ(store_count, 6); ir::Instruction* load_access_chain; ir::Instruction* store_access_chain; ir::Instruction* load_child; ir::Instruction* store_child; opt::SENode* load_node; opt::SENode* store_node; opt::SENode* subtract_node; opt::SENode* simplified_node; // Testing [i] - [i] == 0 load_access_chain = context->get_def_use_mgr()->GetDef(loads[0]->GetSingleWordInOperand(0)); store_access_chain = context->get_def_use_mgr()->GetDef(stores[0]->GetSingleWordInOperand(0)); load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); load_node = analysis.AnalyzeInstruction(load_child); store_node = analysis.AnalyzeInstruction(store_child); subtract_node = analysis.CreateSubtraction(store_node, load_node); simplified_node = analysis.SimplifyExpression(subtract_node); EXPECT_EQ(simplified_node->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified_node->AsSEConstantNode()->FoldToSingleValue(), 0u); // Testing [i] - [i-1] == 1 load_access_chain = context->get_def_use_mgr()->GetDef(loads[1]->GetSingleWordInOperand(0)); store_access_chain = context->get_def_use_mgr()->GetDef(stores[1]->GetSingleWordInOperand(0)); load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); load_node = analysis.AnalyzeInstruction(load_child); store_node = analysis.AnalyzeInstruction(store_child); subtract_node = analysis.CreateSubtraction(store_node, load_node); simplified_node = analysis.SimplifyExpression(subtract_node); EXPECT_EQ(simplified_node->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified_node->AsSEConstantNode()->FoldToSingleValue(), 1u); // Testing [i] - [i+1] == -1 load_access_chain = context->get_def_use_mgr()->GetDef(loads[2]->GetSingleWordInOperand(0)); store_access_chain = context->get_def_use_mgr()->GetDef(stores[2]->GetSingleWordInOperand(0)); load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); load_node = analysis.AnalyzeInstruction(load_child); store_node = analysis.AnalyzeInstruction(store_child); subtract_node = analysis.CreateSubtraction(store_node, load_node); simplified_node = analysis.SimplifyExpression(subtract_node); EXPECT_EQ(simplified_node->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified_node->AsSEConstantNode()->FoldToSingleValue(), -1); // Testing [i+1] - [i+1] == 0 load_access_chain = context->get_def_use_mgr()->GetDef(loads[3]->GetSingleWordInOperand(0)); store_access_chain = context->get_def_use_mgr()->GetDef(stores[3]->GetSingleWordInOperand(0)); load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); load_node = analysis.AnalyzeInstruction(load_child); store_node = analysis.AnalyzeInstruction(store_child); subtract_node = analysis.CreateSubtraction(store_node, load_node); simplified_node = analysis.SimplifyExpression(subtract_node); EXPECT_EQ(simplified_node->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified_node->AsSEConstantNode()->FoldToSingleValue(), 0u); // Testing [i+N] - [i+N] == 0 load_access_chain = context->get_def_use_mgr()->GetDef(loads[4]->GetSingleWordInOperand(0)); store_access_chain = context->get_def_use_mgr()->GetDef(stores[4]->GetSingleWordInOperand(0)); load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); load_node = analysis.AnalyzeInstruction(load_child); store_node = analysis.AnalyzeInstruction(store_child); subtract_node = analysis.CreateSubtraction(store_node, load_node); simplified_node = analysis.SimplifyExpression(subtract_node); EXPECT_EQ(simplified_node->GetType(), opt::SENode::Constant); EXPECT_EQ(simplified_node->AsSEConstantNode()->FoldToSingleValue(), 0u); // Testing [i] - [i+N] == -N load_access_chain = context->get_def_use_mgr()->GetDef(loads[5]->GetSingleWordInOperand(0)); store_access_chain = context->get_def_use_mgr()->GetDef(stores[5]->GetSingleWordInOperand(0)); load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); load_node = analysis.AnalyzeInstruction(load_child); store_node = analysis.AnalyzeInstruction(store_child); subtract_node = analysis.CreateSubtraction(store_node, load_node); simplified_node = analysis.SimplifyExpression(subtract_node); EXPECT_EQ(simplified_node->GetType(), opt::SENode::Negative); } /* Generated from the following GLSL + --eliminate-local-multi-store #version 430 layout(location = 1) out float array[10]; layout(location = 2) flat in int loop_invariant; void main(void) { for (int i = 0; i < 10; ++i) { array[i * 2 + i * 5] = array[i * i * 2]; array[i * 2] = array[i * 5]; } } */ TEST_F(ScalarAnalysisTest, SimplifyMultiplyInductions) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" %3 %4 OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpName %2 "main" OpName %5 "i" OpName %3 "array" OpName %4 "loop_invariant" OpDecorate %3 Location 1 OpDecorate %4 Flat OpDecorate %4 Location 2 %6 = OpTypeVoid %7 = OpTypeFunction %6 %8 = OpTypeInt 32 1 %9 = OpTypePointer Function %8 %10 = OpConstant %8 0 %11 = OpConstant %8 10 %12 = OpTypeBool %13 = OpTypeFloat 32 %14 = OpTypeInt 32 0 %15 = OpConstant %14 10 %16 = OpTypeArray %13 %15 %17 = OpTypePointer Output %16 %3 = OpVariable %17 Output %18 = OpConstant %8 2 %19 = OpConstant %8 5 %20 = OpTypePointer Output %13 %21 = OpConstant %8 1 %22 = OpTypePointer Input %8 %4 = OpVariable %22 Input %2 = OpFunction %6 None %7 %23 = OpLabel %5 = OpVariable %9 Function OpStore %5 %10 OpBranch %24 %24 = OpLabel %25 = OpPhi %8 %10 %23 %26 %27 OpLoopMerge %28 %27 None OpBranch %29 %29 = OpLabel %30 = OpSLessThan %12 %25 %11 OpBranchConditional %30 %31 %28 %31 = OpLabel %32 = OpIMul %8 %25 %18 %33 = OpIMul %8 %25 %19 %34 = OpIAdd %8 %32 %33 %35 = OpIMul %8 %25 %25 %36 = OpIMul %8 %35 %18 %37 = OpAccessChain %20 %3 %36 %38 = OpLoad %13 %37 %39 = OpAccessChain %20 %3 %34 OpStore %39 %38 %40 = OpIMul %8 %25 %18 %41 = OpIMul %8 %25 %19 %42 = OpAccessChain %20 %3 %41 %43 = OpLoad %13 %42 %44 = OpAccessChain %20 %3 %40 OpStore %44 %43 OpBranch %27 %27 = OpLabel %26 = OpIAdd %8 %25 %21 OpStore %5 %26 OpBranch %24 %28 = OpLabel OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 2); opt::ScalarEvolutionAnalysis analysis{context.get()}; const ir::Instruction* loads[2] = {nullptr, nullptr}; const ir::Instruction* stores[2] = {nullptr, nullptr}; int load_count = 0; int store_count = 0; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 31)) { if (inst.opcode() == SpvOp::SpvOpLoad) { loads[load_count] = &inst; ++load_count; } if (inst.opcode() == SpvOp::SpvOpStore) { stores[store_count] = &inst; ++store_count; } } EXPECT_EQ(load_count, 2); EXPECT_EQ(store_count, 2); ir::Instruction* load_access_chain = context->get_def_use_mgr()->GetDef(loads[0]->GetSingleWordInOperand(0)); ir::Instruction* store_access_chain = context->get_def_use_mgr()->GetDef(stores[0]->GetSingleWordInOperand(0)); ir::Instruction* load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); ir::Instruction* store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); opt::SENode* store_node = analysis.AnalyzeInstruction(store_child); opt::SENode* store_simplified = analysis.SimplifyExpression(store_node); load_access_chain = context->get_def_use_mgr()->GetDef(loads[1]->GetSingleWordInOperand(0)); store_access_chain = context->get_def_use_mgr()->GetDef(stores[1]->GetSingleWordInOperand(0)); load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); opt::SENode* second_store = analysis.SimplifyExpression(analysis.AnalyzeInstruction(store_child)); opt::SENode* second_load = analysis.SimplifyExpression(analysis.AnalyzeInstruction(load_child)); opt::SENode* combined_add = analysis.SimplifyExpression( analysis.CreateAddNode(second_load, second_store)); // We're checking that the two recurrent expression have been correctly // folded. In store_simplified they will have been folded as the entire // expression was simplified as one. In combined_add the two expressions have // been simplified one after the other which means the recurrent expressions // aren't exactly the same but should still be folded as they are with respect // to the same loop. EXPECT_EQ(combined_add, store_simplified); } /* Generated from the following GLSL + --eliminate-local-multi-store #version 430 void main(void) { for (int i = 0; i < 10; --i) { array[i] = array[i]; } } */ TEST_F(ScalarAnalysisTest, SimplifyNegativeSteps) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" %3 %4 OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpName %2 "main" OpName %5 "i" OpName %3 "array" OpName %4 "loop_invariant" OpDecorate %3 Location 1 OpDecorate %4 Flat OpDecorate %4 Location 2 %6 = OpTypeVoid %7 = OpTypeFunction %6 %8 = OpTypeInt 32 1 %9 = OpTypePointer Function %8 %10 = OpConstant %8 0 %11 = OpConstant %8 10 %12 = OpTypeBool %13 = OpTypeFloat 32 %14 = OpTypeInt 32 0 %15 = OpConstant %14 10 %16 = OpTypeArray %13 %15 %17 = OpTypePointer Output %16 %3 = OpVariable %17 Output %18 = OpTypePointer Output %13 %19 = OpConstant %8 1 %20 = OpTypePointer Input %8 %4 = OpVariable %20 Input %2 = OpFunction %6 None %7 %21 = OpLabel %5 = OpVariable %9 Function OpStore %5 %10 OpBranch %22 %22 = OpLabel %23 = OpPhi %8 %10 %21 %24 %25 OpLoopMerge %26 %25 None OpBranch %27 %27 = OpLabel %28 = OpSLessThan %12 %23 %11 OpBranchConditional %28 %29 %26 %29 = OpLabel %30 = OpAccessChain %18 %3 %23 %31 = OpLoad %13 %30 %32 = OpAccessChain %18 %3 %23 OpStore %32 %31 OpBranch %25 %25 = OpLabel %24 = OpISub %8 %23 %19 OpStore %5 %24 OpBranch %22 %26 = OpLabel OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 2); opt::ScalarEvolutionAnalysis analysis{context.get()}; const ir::Instruction* loads[1] = {nullptr}; int load_count = 0; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 29)) { if (inst.opcode() == SpvOp::SpvOpLoad) { loads[load_count] = &inst; ++load_count; } } EXPECT_EQ(load_count, 1); ir::Instruction* load_access_chain = context->get_def_use_mgr()->GetDef(loads[0]->GetSingleWordInOperand(0)); ir::Instruction* load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); opt::SENode* load_node = analysis.AnalyzeInstruction(load_child); EXPECT_TRUE(load_node); EXPECT_EQ(load_node->GetType(), opt::SENode::RecurrentAddExpr); EXPECT_TRUE(load_node->AsSERecurrentNode()); opt::SENode* child_1 = load_node->AsSERecurrentNode()->GetCoefficient(); opt::SENode* child_2 = load_node->AsSERecurrentNode()->GetOffset(); EXPECT_EQ(child_1->GetType(), opt::SENode::Constant); EXPECT_EQ(child_2->GetType(), opt::SENode::Constant); EXPECT_EQ(child_1->AsSEConstantNode()->FoldToSingleValue(), -1); EXPECT_EQ(child_2->AsSEConstantNode()->FoldToSingleValue(), 0u); opt::SERecurrentNode* load_simplified = analysis.SimplifyExpression(load_node)->AsSERecurrentNode(); EXPECT_TRUE(load_simplified); EXPECT_EQ(load_node, load_simplified); EXPECT_EQ(load_simplified->GetType(), opt::SENode::RecurrentAddExpr); EXPECT_TRUE(load_simplified->AsSERecurrentNode()); opt::SENode* simplified_child_1 = load_simplified->AsSERecurrentNode()->GetCoefficient(); opt::SENode* simplified_child_2 = load_simplified->AsSERecurrentNode()->GetOffset(); EXPECT_EQ(child_1, simplified_child_1); EXPECT_EQ(child_2, simplified_child_2); } /* Generated from the following GLSL + --eliminate-local-multi-store #version 430 void main(void) { for (int i = 0; i < 10; --i) { array[i] = array[i]; } } */ TEST_F(ScalarAnalysisTest, SimplifyInductionsAndLoads) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" %3 %4 OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpName %2 "main" OpName %5 "i" OpName %3 "array" OpName %4 "N" OpDecorate %3 Location 1 OpDecorate %4 Flat OpDecorate %4 Location 2 %6 = OpTypeVoid %7 = OpTypeFunction %6 %8 = OpTypeInt 32 1 %9 = OpTypePointer Function %8 %10 = OpConstant %8 0 %11 = OpConstant %8 10 %12 = OpTypeBool %13 = OpTypeFloat 32 %14 = OpTypeInt 32 0 %15 = OpConstant %14 10 %16 = OpTypeArray %13 %15 %17 = OpTypePointer Output %16 %3 = OpVariable %17 Output %18 = OpConstant %8 2 %19 = OpTypePointer Input %8 %4 = OpVariable %19 Input %20 = OpTypePointer Output %13 %21 = OpConstant %8 1 %2 = OpFunction %6 None %7 %22 = OpLabel %5 = OpVariable %9 Function OpStore %5 %10 OpBranch %23 %23 = OpLabel %24 = OpPhi %8 %10 %22 %25 %26 OpLoopMerge %27 %26 None OpBranch %28 %28 = OpLabel %29 = OpSLessThan %12 %24 %11 OpBranchConditional %29 %30 %27 %30 = OpLabel %31 = OpLoad %8 %4 %32 = OpIMul %8 %18 %31 %33 = OpIAdd %8 %24 %32 %35 = OpIAdd %8 %24 %31 %36 = OpAccessChain %20 %3 %35 %37 = OpLoad %13 %36 %38 = OpAccessChain %20 %3 %33 OpStore %38 %37 %39 = OpIMul %8 %18 %24 %41 = OpIMul %8 %18 %31 %42 = OpIAdd %8 %39 %41 %43 = OpIAdd %8 %42 %21 %44 = OpIMul %8 %18 %24 %46 = OpIAdd %8 %44 %31 %47 = OpIAdd %8 %46 %21 %48 = OpAccessChain %20 %3 %47 %49 = OpLoad %13 %48 %50 = OpAccessChain %20 %3 %43 OpStore %50 %49 OpBranch %26 %26 = OpLabel %25 = OpISub %8 %24 %21 OpStore %5 %25 OpBranch %23 %27 = OpLabel OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 2); opt::ScalarEvolutionAnalysis analysis{context.get()}; std::vector loads{}; std::vector stores{}; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 30)) { if (inst.opcode() == SpvOp::SpvOpLoad) { loads.push_back(&inst); } if (inst.opcode() == SpvOp::SpvOpStore) { stores.push_back(&inst); } } EXPECT_EQ(loads.size(), 3u); EXPECT_EQ(stores.size(), 2u); { ir::Instruction* store_access_chain = context->get_def_use_mgr()->GetDef( stores[0]->GetSingleWordInOperand(0)); ir::Instruction* store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); opt::SENode* store_node = analysis.AnalyzeInstruction(store_child); opt::SENode* store_simplified = analysis.SimplifyExpression(store_node); ir::Instruction* load_access_chain = context->get_def_use_mgr()->GetDef(loads[1]->GetSingleWordInOperand(0)); ir::Instruction* load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); opt::SENode* load_node = analysis.AnalyzeInstruction(load_child); opt::SENode* load_simplified = analysis.SimplifyExpression(load_node); opt::SENode* difference = analysis.CreateSubtraction(store_simplified, load_simplified); opt::SENode* difference_simplified = analysis.SimplifyExpression(difference); // Check that i+2*N - i*N, turns into just N when both sides have already // been simplified into a single recurrent expression. EXPECT_EQ(difference_simplified->GetType(), opt::SENode::ValueUnknown); // Check that the inverse, i*N - i+2*N turns into -N. opt::SENode* difference_inverse = analysis.SimplifyExpression( analysis.CreateSubtraction(load_simplified, store_simplified)); EXPECT_EQ(difference_inverse->GetType(), opt::SENode::Negative); EXPECT_EQ(difference_inverse->GetChild(0)->GetType(), opt::SENode::ValueUnknown); EXPECT_EQ(difference_inverse->GetChild(0), difference_simplified); } { ir::Instruction* store_access_chain = context->get_def_use_mgr()->GetDef( stores[1]->GetSingleWordInOperand(0)); ir::Instruction* store_child = context->get_def_use_mgr()->GetDef( store_access_chain->GetSingleWordInOperand(1)); opt::SENode* store_node = analysis.AnalyzeInstruction(store_child); opt::SENode* store_simplified = analysis.SimplifyExpression(store_node); ir::Instruction* load_access_chain = context->get_def_use_mgr()->GetDef(loads[2]->GetSingleWordInOperand(0)); ir::Instruction* load_child = context->get_def_use_mgr()->GetDef( load_access_chain->GetSingleWordInOperand(1)); opt::SENode* load_node = analysis.AnalyzeInstruction(load_child); opt::SENode* load_simplified = analysis.SimplifyExpression(load_node); opt::SENode* difference = analysis.CreateSubtraction(store_simplified, load_simplified); opt::SENode* difference_simplified = analysis.SimplifyExpression(difference); // Check that 2*i + 2*N + 1 - 2*i + N + 1, turns into just N when both // sides have already been simplified into a single recurrent expression. EXPECT_EQ(difference_simplified->GetType(), opt::SENode::ValueUnknown); // Check that the inverse, (2*i + N + 1) - (2*i + 2*N + 1) turns into -N. opt::SENode* difference_inverse = analysis.SimplifyExpression( analysis.CreateSubtraction(load_simplified, store_simplified)); EXPECT_EQ(difference_inverse->GetType(), opt::SENode::Negative); EXPECT_EQ(difference_inverse->GetChild(0)->GetType(), opt::SENode::ValueUnknown); EXPECT_EQ(difference_inverse->GetChild(0), difference_simplified); } } /* Generated from the following GLSL + --eliminate-local-multi-store #version 430 layout(location = 1) out float array[10]; layout(location = 2) flat in int N; void main(void) { int step = 0; for (int i = 0; i < N; i += step) { step++; } } */ TEST_F(ScalarAnalysisTest, InductionWithVariantStep) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" %3 %4 OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpName %2 "main" OpName %5 "step" OpName %6 "i" OpName %3 "N" OpName %4 "array" OpDecorate %3 Flat OpDecorate %3 Location 2 OpDecorate %4 Location 1 %7 = OpTypeVoid %8 = OpTypeFunction %7 %9 = OpTypeInt 32 1 %10 = OpTypePointer Function %9 %11 = OpConstant %9 0 %12 = OpTypePointer Input %9 %3 = OpVariable %12 Input %13 = OpTypeBool %14 = OpConstant %9 1 %15 = OpTypeFloat 32 %16 = OpTypeInt 32 0 %17 = OpConstant %16 10 %18 = OpTypeArray %15 %17 %19 = OpTypePointer Output %18 %4 = OpVariable %19 Output %2 = OpFunction %7 None %8 %20 = OpLabel %5 = OpVariable %10 Function %6 = OpVariable %10 Function OpStore %5 %11 OpStore %6 %11 OpBranch %21 %21 = OpLabel %22 = OpPhi %9 %11 %20 %23 %24 %25 = OpPhi %9 %11 %20 %26 %24 OpLoopMerge %27 %24 None OpBranch %28 %28 = OpLabel %29 = OpLoad %9 %3 %30 = OpSLessThan %13 %25 %29 OpBranchConditional %30 %31 %27 %31 = OpLabel %23 = OpIAdd %9 %22 %14 OpStore %5 %23 OpBranch %24 %24 = OpLabel %26 = OpIAdd %9 %25 %23 OpStore %6 %26 OpBranch %21 %27 = OpLabel OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ir::Module* module = context->module(); EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n" << text << std::endl; const ir::Function* f = spvtest::GetFunction(module, 2); opt::ScalarEvolutionAnalysis analysis{context.get()}; std::vector phis{}; for (const ir::Instruction& inst : *spvtest::GetBasicBlock(f, 21)) { if (inst.opcode() == SpvOp::SpvOpPhi) { phis.push_back(&inst); } } EXPECT_EQ(phis.size(), 2u); opt::SENode* phi_node_1 = analysis.AnalyzeInstruction(phis[0]); opt::SENode* phi_node_2 = analysis.AnalyzeInstruction(phis[1]); phi_node_1->DumpDot(std::cout, true); EXPECT_NE(phi_node_1, nullptr); EXPECT_NE(phi_node_2, nullptr); EXPECT_EQ(phi_node_1->GetType(), opt::SENode::RecurrentAddExpr); EXPECT_EQ(phi_node_2->GetType(), opt::SENode::CanNotCompute); opt::SENode* simplified_1 = analysis.SimplifyExpression(phi_node_1); opt::SENode* simplified_2 = analysis.SimplifyExpression(phi_node_2); EXPECT_EQ(simplified_1->GetType(), opt::SENode::RecurrentAddExpr); EXPECT_EQ(simplified_2->GetType(), opt::SENode::CanNotCompute); } } // namespace