// Copyright (c) 2015 The Khronos Group Inc. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and/or associated documentation files (the // "Materials"), to deal in the Materials without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Materials, and to // permit persons to whom the Materials are furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Materials. // // MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS // KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS // SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT // https://www.khronos.org/registry/ // // THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. #include "binary.h" #include #include #include #include #include #include "assembly_grammar.h" #include "diagnostic.h" #include "endian.h" #include "ext_inst.h" #include "opcode.h" #include "operand.h" spv_result_t spvBinaryHeaderGet(const spv_binary binary, const spv_endianness_t endian, spv_header_t* pHeader) { if (!binary->code) return SPV_ERROR_INVALID_BINARY; if (binary->wordCount < SPV_INDEX_INSTRUCTION) return SPV_ERROR_INVALID_BINARY; if (!pHeader) return SPV_ERROR_INVALID_POINTER; // TODO: Validation checking? pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian); pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian); pHeader->generator = spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian); pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian); pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian); pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION]; return SPV_SUCCESS; } // TODO(dneto): This API is not powerful enough in the case that the // number and type of operands are not known until partway through parsing // the operation. This happens when enum operands might have different number // of operands, or with extended instructions. spv_operand_type_t spvBinaryOperandInfo(const uint32_t word, const uint16_t operandIndex, const spv_opcode_desc opcodeEntry, const spv_operand_table operandTable, spv_operand_desc* pOperandEntry) { spv_operand_type_t type; if (operandIndex < opcodeEntry->numTypes) { // NOTE: Do operand table lookup to set operandEntry if successful uint16_t index = operandIndex - 1; type = opcodeEntry->operandTypes[index]; spv_operand_desc entry = nullptr; if (!spvOperandTableValueLookup(operandTable, type, word, &entry)) { if (SPV_OPERAND_TYPE_NONE != entry->operandTypes[0]) { *pOperandEntry = entry; } } } else if (*pOperandEntry) { // NOTE: Use specified operand entry operand type for this word uint16_t index = operandIndex - opcodeEntry->numTypes; type = (*pOperandEntry)->operandTypes[index]; } else if (SpvOpSwitch == opcodeEntry->opcode) { // NOTE: OpSwitch is a special case which expects a list of paired extra // operands assert(0 && "This case is previously untested, remove this assert and ensure it " "is behaving correctly!"); uint16_t lastIndex = opcodeEntry->numTypes - 1; uint16_t index = lastIndex + ((operandIndex - lastIndex) % 2); type = opcodeEntry->operandTypes[index]; } else { // NOTE: Default to last operand type in opcode entry uint16_t index = opcodeEntry->numTypes - 1; type = opcodeEntry->operandTypes[index]; } return type; } namespace { // A SPIR-V binary parser. A parser instance communicates detailed parse // results via callbacks. class Parser { public: // The user_data value is provided to the callbacks as context. Parser(void* user_data, spv_parsed_header_fn_t parsed_header_fn, spv_parsed_instruction_fn_t parsed_instruction_fn) : user_data_(user_data), parsed_header_fn_(parsed_header_fn), parsed_instruction_fn_(parsed_instruction_fn) {} // Parses the specified binary SPIR-V module, issuing callbacks on a parsed // header and for each parsed instruction. Returns SPV_SUCCESS on success. // Otherwise returns an error code and issues a diagnostic. spv_result_t parse(const uint32_t* words, size_t num_words, spv_diagnostic* diagnostic); private: // All remaining methods work on the current module parse state. // Like the parse method, but works on the current module parse state. spv_result_t parseModule(); // Parses an instruction at the current position of the binary. Assumes // the header has been parsed, the endian has been set, and the word index is // still in range. Advances the parsing position past the instruction, and // updates other parsing state for the current module. // On success, returns SPV_SUCCESS and issues the parsed-instruction callback. // On failure, returns an error code and issues a diagnostic. spv_result_t parseInstruction(); // Parses an instruction operand with the given type. // May update the expected_operands parameter, and the scalar members of the // inst parameter. On success, returns SPV_SUCCESS, advances past the // operand, and pushes a new entry on to the operands vector. Otherwise // returns an error code and issues a diagnostic. spv_result_t parseOperand(spv_parsed_instruction_t* inst, const spv_operand_type_t type, std::vector* operands, spv_operand_pattern_t* expected_operands); // Records the numeric type for an operand according to the type information // associated with the given non-zero type Id. This can fail if the type Id // is not a type Id, or if the type Id does not reference a scalar numeric // type. On success, return SPV_SUCCESS and populates the num_words, // number_kind, and number_bit_width fields of parsed_operand. spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand, uint32_t type_id); // Records the number type for an instruction if that instruction generates // a type. For types that aren't scalar numbers, record something with // number kind SPV_NUMBER_NONE. void recordNumberType(const spv_parsed_instruction_t* inst); // Returns a diagnostic stream object initialized with current position in // the input stream, and for the given error code. Any data written to the // returned object will be propagated to the current parse's diagnostic // object. DiagnosticStream diagnostic(spv_result_t error) { return DiagnosticStream({0, 0, _.word_index}, _.diagnostic, error); } // Returns a diagnostic stream object with the default parse error code. DiagnosticStream diagnostic() { // The default failure for parsing is invalid binary. return diagnostic(SPV_ERROR_INVALID_BINARY); } // Returns the endian-corrected word at the current position. uint32_t peek() const { return peekAt(_.word_index); } // Returns the endian-corrected word at the given position. uint32_t peekAt(size_t index) const { assert(index < _.num_words); return spvFixWord(_.words[index], _.endian); } // Data members const libspirv::AssemblyGrammar grammar_; // SPIR-V syntax utility. void* const user_data_; // Context for the callbacks const spv_parsed_header_fn_t parsed_header_fn_; // Parsed header callback const spv_parsed_instruction_fn_t parsed_instruction_fn_; // Parsed instruction callback // Describes the format of a typed literal number. struct NumberType { spv_number_kind_t type; uint32_t bit_width; }; // The state used to parse a single SPIR-V binary module. struct State { State(const uint32_t* words_arg, size_t num_words_arg, spv_diagnostic* diagnostic_arg) : words(words_arg), num_words(num_words_arg), diagnostic(diagnostic_arg), word_index(0), endian() {} State() : State(0, 0, nullptr) {} const uint32_t* words; // Words in the binary SPIR-V module. size_t num_words; // Number of words in the module. spv_diagnostic* diagnostic; // Where diagnostics go. size_t word_index; // The current position in words. spv_endianness_t endian; // The endianness of the binary. // Maps a result ID to its type ID. By convention: // - a result ID that is a type definition maps to itself. // - a result ID without a type maps to 0. (E.g. for OpLabel) std::unordered_map id_to_type_id; // Maps a type ID to its number type description. std::unordered_map type_id_to_number_type_info; // Maps an ExtInstImport id to the extended instruction type. std::unordered_map import_id_to_ext_inst_type; } _; }; spv_result_t Parser::parse(const uint32_t* words, size_t num_words, spv_diagnostic* diagnostic_arg) { _ = State(words, num_words, diagnostic_arg); const spv_result_t result = parseModule(); // Clear the module state. The tables might be big. _ = State(); return result; } spv_result_t Parser::parseModule() { if (!_.words) return diagnostic() << "Missing module."; if (_.num_words < SPV_INDEX_INSTRUCTION) return diagnostic() << "Module has incomplete header: only " << _.num_words << " words instead of " << SPV_INDEX_INSTRUCTION; // Check the magic number and detect the module's endianness. spv_binary_t binary = {_.words, _.num_words}; // Can't make this const. :-( if (spvBinaryEndianness(&binary, &_.endian)) { return diagnostic() << "Invalid SPIR-V magic number '" << std::hex << _.words[0] << "'."; } // Process the header. spv_header_t header; if (spvBinaryHeaderGet(&binary, _.endian, &header)) { // It turns out there is no way to trigger this error since the only // failure cases are already handled above, with better messages. return diagnostic(SPV_ERROR_INTERNAL) << "Internal error: unhandled header parse failure"; } if (parsed_header_fn_) { if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic, header.version, header.generator, header.bound, header.schema)) { return error; } } // Process the instructions. _.word_index = SPV_INDEX_INSTRUCTION; while (_.word_index < _.num_words) if (auto error = parseInstruction()) return error; // Running off the end should already have been reported earlier. assert(_.word_index == _.num_words); return SPV_SUCCESS; } spv_result_t Parser::parseInstruction() { // The zero values for all members except for opcode are the // correct initial values. spv_parsed_instruction_t inst = {}; inst.offset = _.word_index; // After a successful parse of the instruction, the inst.operands member // will point to this vector's storage. // TODO(dneto): If it's too expensive to construct the operands vector for // each instruction, then make this a class data member instead, and clear it // here. std::vector operands; // Most instructions have fewer than 25 logical operands. operands.reserve(25); assert(_.word_index < _.num_words); // Decompose and check the first word. uint16_t inst_word_count = 0; spvOpcodeSplit(peek(), &inst_word_count, &inst.opcode); if (inst_word_count < 1) { return diagnostic() << "Invalid instruction word count: " << inst_word_count; } spv_opcode_desc opcode_desc; if (grammar_.lookupOpcode(inst.opcode, &opcode_desc)) return diagnostic() << "Invalid opcode: " << int(inst.opcode); _.word_index++; // Maintains the ordered list of expected operand types. // For many instructions we only need the {numTypes, operandTypes} // entries in opcode_desc. However, sometimes we need to modify // the list as we parse the operands. This occurs when an operand // has its own logical operands (such as the LocalSize operand for // ExecutionMode), or for extended instructions that may have their // own operands depending on the selected extended instruction. spv_operand_pattern_t expected_operands( opcode_desc->operandTypes, opcode_desc->operandTypes + opcode_desc->numTypes); while (_.word_index < inst.offset + inst_word_count) { const uint16_t inst_word_index = _.word_index - inst.offset; if (expected_operands.empty()) { return diagnostic() << "Invalid instruction Op" << opcode_desc->name << " starting at word " << inst.offset << ": expected no more operands after " << inst_word_index << " words, but stated word count is " << inst_word_count << "."; } spv_operand_type_t type = spvTakeFirstMatchableOperand(&expected_operands); if (auto error = parseOperand(&inst, type, &operands, &expected_operands)) return error; } if (!expected_operands.empty() && !spvOperandIsOptional(expected_operands.front())) { return diagnostic() << "End of input reached while decoding Op" << opcode_desc->name << " starting at word " << inst.offset << ": expected more operands after " << inst_word_count << " words."; } if ((inst.offset + inst_word_count) != _.word_index) { return diagnostic() << "Invalid word count: Instruction starting at word " << inst.offset << " says it has " << inst_word_count << " words, but found " << _.word_index - inst.offset << " words instead."; } recordNumberType(&inst); // Must wait until here to set the inst.operands pointer because the vector // might be resized while we accumulate itse elements. inst.operands = operands.data(); inst.num_operands = operands.size(); // Issue the callback. The callee should know that all the storage in inst // is transient, and will disappear immediately afterward. if (parsed_instruction_fn_) { if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error; } return SPV_SUCCESS; } spv_result_t Parser::parseOperand(spv_parsed_instruction_t* inst, const spv_operand_type_t type, std::vector* operands, spv_operand_pattern_t* expected_operands) { // We'll fill in this result as we go along. spv_parsed_operand_t parsed_operand; parsed_operand.offset = _.word_index - inst->offset; // Most operands occupy one word. This might be be adjusted later. parsed_operand.num_words = 1; // The type argument is the one used by the grammar to parse the instruction. // But it can exposes internal parser details such as whether an operand is // optional or actually represents a variable-length sequence of operands. // The resulting type should be adjusted to avoid those internal details. // In most cases, the resulting operand type is the same as the grammar type. parsed_operand.type = type; // Assume non-numeric values. This will be updated for literal numbers. parsed_operand.number_kind = SPV_NUMBER_NONE; parsed_operand.number_bit_width = 0; const uint32_t word = peek(); switch (type) { case SPV_OPERAND_TYPE_TYPE_ID: if (!word) return diagnostic() << "Error: Type Id is 0"; inst->type_id = word; break; case SPV_OPERAND_TYPE_RESULT_ID: if (!word) return diagnostic() << "Error: Result Id is 0"; inst->result_id = word; // Save the result ID to type ID mapping. // In the grammar, type ID always appears before result ID. if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end()) return diagnostic() << "Id " << inst->result_id << " is defined more than once"; // Record it. // A regular value maps to its type. Some instructions (e.g. OpLabel) // have no type Id, and will map to 0. The result Id for a // type-generating instruction (e.g. OpTypeInt) maps to itself. _.id_to_type_id[inst->result_id] = spvOpcodeGeneratesType(inst->opcode) ? inst->result_id : inst->type_id; break; case SPV_OPERAND_TYPE_ID: case SPV_OPERAND_TYPE_OPTIONAL_ID: if (!word) return diagnostic() << "Id is 0"; parsed_operand.type = SPV_OPERAND_TYPE_ID; if (inst->opcode == SpvOpExtInst && parsed_operand.offset == 3) { // The current word is the extended instruction set Id. // Set the extended instruction set type for the current instruction. auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word); if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) { return diagnostic() << "OpExtInst set Id " << word << " does not reference an OpExtInstImport result Id"; } inst->ext_inst_type = ext_inst_type_iter->second; } break; case SPV_OPERAND_TYPE_EXECUTION_SCOPE: case SPV_OPERAND_TYPE_MEMORY_SEMANTICS: if (!word) return diagnostic() << spvOperandTypeStr(type) << " Id is 0"; break; case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: { assert(SpvOpExtInst == inst->opcode); assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE); spv_ext_inst_desc ext_inst; if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst)) return diagnostic() << "Invalid extended instruction number: " << word; spvPrependOperandTypes(ext_inst->operandTypes, expected_operands); } break; case SPV_OPERAND_TYPE_LITERAL_INTEGER: case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER: // These are regular single-word literal integer operands. // Post-parsing validation should check the range of the parsed value. parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER; // It turns out they are always unsigned integers! parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT; parsed_operand.number_bit_width = 32; break; case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER: case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER: if (inst->opcode == SpvOpSwitch) { // The literal operands have the same type as the value // referenced by the selector Id. const uint32_t selector_id = peekAt(inst->offset + 1); auto type_id_iter = _.id_to_type_id.find(selector_id); if (type_id_iter == _.id_to_type_id.end()) { return diagnostic() << "Invalid OpSwitch: selector id " << selector_id << " has no type"; } uint32_t type_id = type_id_iter->second; if (selector_id == type_id) { // Recall that by convention, a result ID that is a type definition // maps to itself. return diagnostic() << "Invalid OpSwitch: selector id " << selector_id << " is a type, not a value"; } if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id)) return error; if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT && parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) { return diagnostic() << "Invalid OpSwitch: selector id " << selector_id << " is not a scalar integer"; } } else { assert(inst->opcode == SpvOpConstant || inst->opcode == SpvOpSpecConstant); // The literal number type is determined by the type Id for the // constant. assert(inst->type_id); if (auto error = setNumericTypeInfoForType(&parsed_operand, inst->type_id)) return error; } break; case SPV_OPERAND_TYPE_LITERAL_STRING: case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: { // TODO(dneto): Make and use spvFixupString(); const char* string = reinterpret_cast(_.words + _.word_index); size_t string_num_words = (strlen(string) / 4) + 1; // Account for null. // Make sure we can record the word count without overflow. // We still might have a string that's 64K words, but would still // make the instruction too long because of earlier operands. // That will be caught later at the end of the instruciton. if (string_num_words > std::numeric_limits::max()) { return diagnostic() << "Literal string is longer than " << std::numeric_limits::max() << " words: " << string_num_words << " words long"; } parsed_operand.num_words = string_num_words; parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING; if (SpvOpExtInstImport == inst->opcode) { // Record the extended instruction type for the ID for this import. // There is only one string literal argument to OpExtInstImport, // so it's sufficient to guard this just on the opcode. const spv_ext_inst_type_t ext_inst_type = spvExtInstImportTypeGet(string); if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) { return diagnostic() << "Invalid extended instruction import '" << string << "'"; } // We must have parsed a valid result ID. It's a condition // of the grammar, and we only accept non-zero result Ids. assert(inst->result_id); _.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type; } } break; case SPV_OPERAND_TYPE_OPTIONAL_EXECUTION_MODE: parsed_operand.type = SPV_OPERAND_TYPE_EXECUTION_MODE; // Fall through case SPV_OPERAND_TYPE_CAPABILITY: case SPV_OPERAND_TYPE_SOURCE_LANGUAGE: case SPV_OPERAND_TYPE_EXECUTION_MODEL: case SPV_OPERAND_TYPE_ADDRESSING_MODEL: case SPV_OPERAND_TYPE_MEMORY_MODEL: case SPV_OPERAND_TYPE_EXECUTION_MODE: case SPV_OPERAND_TYPE_STORAGE_CLASS: case SPV_OPERAND_TYPE_DIMENSIONALITY: case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE: case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE: case SPV_OPERAND_TYPE_FP_ROUNDING_MODE: case SPV_OPERAND_TYPE_LINKAGE_TYPE: case SPV_OPERAND_TYPE_ACCESS_QUALIFIER: case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE: case SPV_OPERAND_TYPE_DECORATION: case SPV_OPERAND_TYPE_BUILT_IN: case SPV_OPERAND_TYPE_GROUP_OPERATION: case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS: case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: { // A single word that is a plain enum value. spv_operand_desc entry; if (grammar_.lookupOperand(type, word, &entry)) { return diagnostic() << "Invalid " << spvOperandTypeStr(parsed_operand.type) << " operand: " << word; } // Prepare to accept operands to this operand, if needed. spvPrependOperandTypes(entry->operandTypes, expected_operands); } break; case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE: case SPV_OPERAND_TYPE_FUNCTION_CONTROL: case SPV_OPERAND_TYPE_LOOP_CONTROL: case SPV_OPERAND_TYPE_OPTIONAL_IMAGE: case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS: case SPV_OPERAND_TYPE_SELECTION_CONTROL: { // This operand is a mask. // Map an optional operand type to its corresponding concrete type. if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE) parsed_operand.type = SPV_OPERAND_TYPE_IMAGE; else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS) parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS; // Check validity of set mask bits. Also prepare for operands for those // masks if they have any. To get operand order correct, scan from // MSB to LSB since we can only prepend operands to a pattern. // The only case in the grammar where you have more than one mask bit // having an operand is for image operands. See SPIR-V 3.14 Image // Operands. uint32_t remaining_word = word; for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) { if (remaining_word & mask) { spv_operand_desc entry; if (grammar_.lookupOperand(type, mask, &entry)) { return diagnostic() << "Invalid " << spvOperandTypeStr(parsed_operand.type) << " operand: " << word << " has invalid mask component " << mask; } remaining_word ^= mask; spvPrependOperandTypes(entry->operandTypes, expected_operands); } } if (word == 0) { // An all-zeroes mask *might* also be valid. spv_operand_desc entry; if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) { // Prepare for its operands, if any. spvPrependOperandTypes(entry->operandTypes, expected_operands); } } } break; default: return diagnostic() << "Internal error: Unhandled operand type: " << type; } assert(int(SPV_OPERAND_TYPE_FIRST_CONCRETE_TYPE) <= int(parsed_operand.type)); assert(int(SPV_OPERAND_TYPE_LAST_CONCRETE_TYPE) >= int(parsed_operand.type)); operands->push_back(parsed_operand); _.word_index += parsed_operand.num_words; return SPV_SUCCESS; } spv_result_t Parser::setNumericTypeInfoForType( spv_parsed_operand_t* parsed_operand, uint32_t type_id) { assert(type_id != 0); auto type_info_iter = _.type_id_to_number_type_info.find(type_id); if (type_info_iter == _.type_id_to_number_type_info.end()) { return diagnostic() << "Type Id " << type_id << " is not a type"; } const NumberType& info = type_info_iter->second; if (info.type == SPV_NUMBER_NONE) { // This is a valid type, but for something other than a scalar number. return diagnostic() << "Type Id " << type_id << " is not a scalar numeric type"; } parsed_operand->number_kind = info.type; parsed_operand->number_bit_width = info.bit_width; parsed_operand->num_words = (info.bit_width + 31) / 32; // Round up return SPV_SUCCESS; } void Parser::recordNumberType(const spv_parsed_instruction_t* inst) { if (spvOpcodeGeneratesType(inst->opcode)) { NumberType info = {SPV_NUMBER_NONE, 0}; if (SpvOpTypeInt == inst->opcode) { const bool is_signed = peekAt(inst->offset + 3) != 0; info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT; info.bit_width = peekAt(inst->offset + 2); } else if (SpvOpTypeFloat == inst->opcode) { info.type = SPV_NUMBER_FLOATING; info.bit_width = peekAt(inst->offset + 2); } // The *result* Id of a type generating instruction is the type Id. _.type_id_to_number_type_info[inst->result_id] = info; } } } // anonymous namespace spv_result_t spvBinaryParse(void* user_data, const uint32_t* const code, const size_t num_words, spv_parsed_header_fn_t parsed_header, spv_parsed_instruction_fn_t parsed_instruction, spv_diagnostic* diagnostic) { Parser parser(user_data, parsed_header, parsed_instruction); return parser.parse(code, num_words, diagnostic); } // TODO(dneto): This probably belongs in text.cpp since that's the only place // that a spv_binary_t value is created. void spvBinaryDestroy(spv_binary binary) { if (!binary) return; if (binary->code) { delete[] binary->code; } delete binary; }