// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Contains utils for reading, writing and debug printing bit streams. #ifndef LIBSPIRV_UTIL_HUFFMAN_CODEC_H_ #define LIBSPIRV_UTIL_HUFFMAN_CODEC_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include namespace spvutils { // Used to generate and apply a Huffman coding scheme. // |Val| is the type of variable being encoded (for example a string or a // literal). template class HuffmanCodec { struct Node; public: // Creates Huffman codec from a histogramm. // Histogramm counts must not be zero. explicit HuffmanCodec(const std::map& hist) { if (hist.empty()) return; // Heuristic estimate. all_nodes_.reserve(3 * hist.size()); // The queue is sorted in ascending order by weight (or by node id if // weights are equal). std::vector queue_vector; queue_vector.reserve(hist.size()); std::priority_queue, std::function> queue(LeftIsBigger, std::move(queue_vector)); // Put all leaves in the queue. for (const auto& pair : hist) { Node* node = CreateNode(); node->val = pair.first; node->weight = pair.second; assert(node->weight); queue.push(node); } // Form the tree by combining two subtrees with the least weight, // and pushing the root of the new tree in the queue. while (true) { // We push a node at the end of each iteration, so the queue is never // supposed to be empty at this point, unless there are no leaves, but // that case was already handled. assert(!queue.empty()); Node* right = queue.top(); queue.pop(); // If the queue is empty at this point, then the last node is // the root of the complete Huffman tree. if (queue.empty()) { root_ = right; break; } Node* left = queue.top(); queue.pop(); // Combine left and right into a new tree and push it into the queue. Node* parent = CreateNode(); parent->weight = right->weight + left->weight; parent->left = left; parent->right = right; queue.push(parent); } // Traverse the tree and form encoding table. CreateEncodingTable(); } // Prints the Huffman tree in the following format: // w------w------'x' // w------'y' // Where w stands for the weight of the node. // Right tree branches appear above left branches. Taking the right path // adds 1 to the code, taking the left adds 0. void PrintTree(std::ostream& out) { PrintTreeInternal(out, root_, 0); } // Traverses the tree and prints the Huffman table: value, code // and optionally node weight for every leaf. void PrintTable(std::ostream& out, bool print_weights = true) { std::queue> queue; queue.emplace(root_, ""); while (!queue.empty()) { const Node* node = queue.front().first; const std::string code = queue.front().second; queue.pop(); if (!node->right && !node->left) { out << node->val; if (print_weights) out << " " << node->weight; out << " " << code << std::endl; } else { if (node->left) queue.emplace(node->left, code + "0"); if (node->right) queue.emplace(node->right, code + "1"); } } } // Returns the Huffman table. The table was built at at construction time, // this function just returns a const reference. const std::unordered_map>& GetEncodingTable() const { return encoding_table_; } // Encodes |val| and stores its Huffman code in the lower |num_bits| of // |bits|. Returns false of |val| is not in the Huffman table. bool Encode(const Val& val, uint64_t* bits, size_t* num_bits) { auto it = encoding_table_.find(val); if (it == encoding_table_.end()) return false; *bits = it->second.first; *num_bits = it->second.second; return true; } // Reads bits one-by-one using callback |read_bit| until a match is found. // Matching value is stored in |val|. Returns false if |read_bit| terminates // before a code was mathced. // |read_bit| has type bool func(bool* bit). When called, the next bit is // stored in |bit|. |read_bit| returns false if the stream terminates // prematurely. bool DecodeFromStream(const std::function& read_bit, Val* val) { Node* node = root_; while (true) { assert(node); if (node->left == nullptr && node->right == nullptr) { *val = node->val; return true; } bool go_right; if (!read_bit(&go_right)) return false; if (go_right) node = node->right; else node = node->left; } assert (0); return false; } private: // Huffman tree node. struct Node { Val val = Val(); uint32_t weight = 0; // Ids are issued sequentially starting from 1. Ids are used as an ordering // tie-breaker, to make sure that the ordering (and resulting coding scheme) // are consistent accross multiple platforms. uint32_t id = 0; Node* left = nullptr; Node* right = nullptr; }; // Returns true if |left| has bigger weight than |right|. Node ids are // used as tie-breaker. static bool LeftIsBigger(const Node* left, const Node* right) { if (left->weight == right->weight) { assert (left->id != right->id); return left->id > right->id; } return left->weight > right->weight; } // Prints subtree (helper function used by PrintTree). static void PrintTreeInternal(std::ostream& out, Node* node, size_t depth) { if (!node) return; const size_t kTextFieldWidth = 7; if (!node->right && !node->left) { out << node->val << std::endl; } else { if (node->right) { std::stringstream label; label << std::setfill('-') << std::left << std::setw(kTextFieldWidth) << node->right->weight; out << label.str(); PrintTreeInternal(out, node->right, depth + 1); } if (node->left) { out << std::string(depth * kTextFieldWidth, ' '); std::stringstream label; label << std::setfill('-') << std::left << std::setw(kTextFieldWidth) << node->left->weight; out << label.str(); PrintTreeInternal(out, node->left, depth + 1); } } } // Traverses the Huffman tree and saves paths to the leaves as bit // sequences to encoding_table_. void CreateEncodingTable() { struct Context { Context(Node* in_node, uint64_t in_bits, size_t in_depth) : node(in_node), bits(in_bits), depth(in_depth) {} Node* node; // Huffman tree depth cannot exceed 64 as histogramm counts are expected // to be positive and limited by numeric_limits::max(). // For practical applications tree depth would be much smaller than 64. uint64_t bits; size_t depth; }; std::queue queue; queue.emplace(root_, 0, 0); while (!queue.empty()) { const Context& context = queue.front(); const Node* node = context.node; const uint64_t bits = context.bits; const size_t depth = context.depth; queue.pop(); if (!node->right && !node->left) { auto insertion_result = encoding_table_.emplace( node->val, std::pair(bits, depth)); assert(insertion_result.second); (void)insertion_result; } else { if (node->left) queue.emplace(node->left, bits, depth + 1); if (node->right) queue.emplace(node->right, bits | (1ULL << depth), depth + 1); } } } // Creates new Huffman tree node and stores it in the deleter array. Node* CreateNode() { all_nodes_.emplace_back(new Node()); all_nodes_.back()->id = next_node_id_++; return all_nodes_.back().get(); } // Huffman tree root. Node* root_ = nullptr; // Huffman tree deleter. std::vector> all_nodes_; // Encoding table value -> {bits, num_bits}. // Huffman codes are expected to never exceed 64 bit length (this is in fact // impossible if frequencies are stored as uint32_t). std::unordered_map> encoding_table_; // Next node id issued by CreateNode(); uint32_t next_node_id_ = 1; }; } // namespace spvutils #endif // LIBSPIRV_UTIL_HUFFMAN_CODEC_H_