// Copyright (c) 2015-2020 The Khronos Group Inc. // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights // reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_ #define INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_ #ifdef __cplusplus extern "C" { #else #include #endif #include #include #if defined(SPIRV_TOOLS_SHAREDLIB) #if defined(_WIN32) #if defined(SPIRV_TOOLS_IMPLEMENTATION) #define SPIRV_TOOLS_EXPORT __declspec(dllexport) #else #define SPIRV_TOOLS_EXPORT __declspec(dllimport) #endif #else #if defined(SPIRV_TOOLS_IMPLEMENTATION) #define SPIRV_TOOLS_EXPORT __attribute__((visibility("default"))) #else #define SPIRV_TOOLS_EXPORT #endif #endif #else #define SPIRV_TOOLS_EXPORT #endif // Helpers #define SPV_BIT(shift) (1 << (shift)) #define SPV_FORCE_16_BIT_ENUM(name) SPV_FORCE_16BIT_##name = 0x7fff #define SPV_FORCE_32_BIT_ENUM(name) SPV_FORCE_32BIT_##name = 0x7fffffff // Enumerations typedef enum spv_result_t { SPV_SUCCESS = 0, SPV_UNSUPPORTED = 1, SPV_END_OF_STREAM = 2, SPV_WARNING = 3, SPV_FAILED_MATCH = 4, SPV_REQUESTED_TERMINATION = 5, // Success, but signals early termination. SPV_ERROR_INTERNAL = -1, SPV_ERROR_OUT_OF_MEMORY = -2, SPV_ERROR_INVALID_POINTER = -3, SPV_ERROR_INVALID_BINARY = -4, SPV_ERROR_INVALID_TEXT = -5, SPV_ERROR_INVALID_TABLE = -6, SPV_ERROR_INVALID_VALUE = -7, SPV_ERROR_INVALID_DIAGNOSTIC = -8, SPV_ERROR_INVALID_LOOKUP = -9, SPV_ERROR_INVALID_ID = -10, SPV_ERROR_INVALID_CFG = -11, SPV_ERROR_INVALID_LAYOUT = -12, SPV_ERROR_INVALID_CAPABILITY = -13, SPV_ERROR_INVALID_DATA = -14, // Indicates data rules validation failure. SPV_ERROR_MISSING_EXTENSION = -15, SPV_ERROR_WRONG_VERSION = -16, // Indicates wrong SPIR-V version SPV_FORCE_32_BIT_ENUM(spv_result_t) } spv_result_t; // Severity levels of messages communicated to the consumer. typedef enum spv_message_level_t { SPV_MSG_FATAL, // Unrecoverable error due to environment. // Will exit the program immediately. E.g., // out of memory. SPV_MSG_INTERNAL_ERROR, // Unrecoverable error due to SPIRV-Tools // internals. // Will exit the program immediately. E.g., // unimplemented feature. SPV_MSG_ERROR, // Normal error due to user input. SPV_MSG_WARNING, // Warning information. SPV_MSG_INFO, // General information. SPV_MSG_DEBUG, // Debug information. } spv_message_level_t; typedef enum spv_endianness_t { SPV_ENDIANNESS_LITTLE, SPV_ENDIANNESS_BIG, SPV_FORCE_32_BIT_ENUM(spv_endianness_t) } spv_endianness_t; // The kinds of operands that an instruction may have. // // Some operand types are "concrete". The binary parser uses a concrete // operand type to describe an operand of a parsed instruction. // // The assembler uses all operand types. In addition to determining what // kind of value an operand may be, non-concrete operand types capture the // fact that an operand might be optional (may be absent, or present exactly // once), or might occur zero or more times. // // Sometimes we also need to be able to express the fact that an operand // is a member of an optional tuple of values. In that case the first member // would be optional, and the subsequent members would be required. // // NOTE: Although we don't promise binary compatibility, as a courtesy, please // add new enum values at the end. typedef enum spv_operand_type_t { // A sentinel value. SPV_OPERAND_TYPE_NONE = 0, // Set 1: Operands that are IDs. SPV_OPERAND_TYPE_ID, SPV_OPERAND_TYPE_TYPE_ID, SPV_OPERAND_TYPE_RESULT_ID, SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, // SPIR-V Sec 3.25 SPV_OPERAND_TYPE_SCOPE_ID, // SPIR-V Sec 3.27 // Set 2: Operands that are literal numbers. SPV_OPERAND_TYPE_LITERAL_INTEGER, // Always unsigned 32-bits. // The Instruction argument to OpExtInst. It's an unsigned 32-bit literal // number indicating which instruction to use from an extended instruction // set. SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, // The Opcode argument to OpSpecConstantOp. It determines the operation // to be performed on constant operands to compute a specialization constant // result. SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER, // A literal number whose format and size are determined by a previous operand // in the same instruction. It's a signed integer, an unsigned integer, or a // floating point number. It also has a specified bit width. The width // may be larger than 32, which would require such a typed literal value to // occupy multiple SPIR-V words. SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER, // Set 3: The literal string operand type. SPV_OPERAND_TYPE_LITERAL_STRING, // Set 4: Operands that are a single word enumerated value. SPV_OPERAND_TYPE_SOURCE_LANGUAGE, // SPIR-V Sec 3.2 SPV_OPERAND_TYPE_EXECUTION_MODEL, // SPIR-V Sec 3.3 SPV_OPERAND_TYPE_ADDRESSING_MODEL, // SPIR-V Sec 3.4 SPV_OPERAND_TYPE_MEMORY_MODEL, // SPIR-V Sec 3.5 SPV_OPERAND_TYPE_EXECUTION_MODE, // SPIR-V Sec 3.6 SPV_OPERAND_TYPE_STORAGE_CLASS, // SPIR-V Sec 3.7 SPV_OPERAND_TYPE_DIMENSIONALITY, // SPIR-V Sec 3.8 SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE, // SPIR-V Sec 3.9 SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE, // SPIR-V Sec 3.10 SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT, // SPIR-V Sec 3.11 SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER, // SPIR-V Sec 3.12 SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE, // SPIR-V Sec 3.13 SPV_OPERAND_TYPE_FP_ROUNDING_MODE, // SPIR-V Sec 3.16 SPV_OPERAND_TYPE_LINKAGE_TYPE, // SPIR-V Sec 3.17 SPV_OPERAND_TYPE_ACCESS_QUALIFIER, // SPIR-V Sec 3.18 SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE, // SPIR-V Sec 3.19 SPV_OPERAND_TYPE_DECORATION, // SPIR-V Sec 3.20 SPV_OPERAND_TYPE_BUILT_IN, // SPIR-V Sec 3.21 SPV_OPERAND_TYPE_GROUP_OPERATION, // SPIR-V Sec 3.28 SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS, // SPIR-V Sec 3.29 SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO, // SPIR-V Sec 3.30 SPV_OPERAND_TYPE_CAPABILITY, // SPIR-V Sec 3.31 // NOTE: New concrete enum values should be added at the end. // Set 5: Operands that are a single word bitmask. // Sometimes a set bit indicates the instruction requires still more operands. SPV_OPERAND_TYPE_IMAGE, // SPIR-V Sec 3.14 SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, // SPIR-V Sec 3.15 SPV_OPERAND_TYPE_SELECTION_CONTROL, // SPIR-V Sec 3.22 SPV_OPERAND_TYPE_LOOP_CONTROL, // SPIR-V Sec 3.23 SPV_OPERAND_TYPE_FUNCTION_CONTROL, // SPIR-V Sec 3.24 SPV_OPERAND_TYPE_MEMORY_ACCESS, // SPIR-V Sec 3.26 SPV_OPERAND_TYPE_FRAGMENT_SHADING_RATE, // SPIR-V Sec 3.FSR // NOTE: New concrete enum values should be added at the end. // The "optional" and "variable" operand types are only used internally by // the assembler and the binary parser. // There are two categories: // Optional : expands to 0 or 1 operand, like ? in regular expressions. // Variable : expands to 0, 1 or many operands or pairs of operands. // This is similar to * in regular expressions. // NOTE: These FIRST_* and LAST_* enum values are DEPRECATED. // The concept of "optional" and "variable" operand types are only intended // for use as an implementation detail of parsing SPIR-V, either in text or // binary form. Instead of using enum ranges, use characteristic function // spvOperandIsConcrete. // The use of enum value ranges in a public API makes it difficult to insert // new values into a range without also breaking binary compatibility. // // Macros for defining bounds on optional and variable operand types. // Any variable operand type is also optional. // TODO(dneto): Remove SPV_OPERAND_TYPE_FIRST_* and SPV_OPERAND_TYPE_LAST_* #define FIRST_OPTIONAL(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_OPTIONAL_TYPE = ENUM #define FIRST_VARIABLE(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_VARIABLE_TYPE = ENUM #define LAST_VARIABLE(ENUM) \ ENUM, SPV_OPERAND_TYPE_LAST_VARIABLE_TYPE = ENUM, \ SPV_OPERAND_TYPE_LAST_OPTIONAL_TYPE = ENUM // An optional operand represents zero or one logical operands. // In an instruction definition, this may only appear at the end of the // operand types. FIRST_OPTIONAL(SPV_OPERAND_TYPE_OPTIONAL_ID), // An optional image operand type. SPV_OPERAND_TYPE_OPTIONAL_IMAGE, // An optional memory access type. SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS, // An optional literal integer. SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER, // An optional literal number, which may be either integer or floating point. SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER, // Like SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER, but optional, and integral. SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER, // An optional literal string. SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING, // An optional access qualifier SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER, // An optional context-independent value, or CIV. CIVs are tokens that we can // assemble regardless of where they occur -- literals, IDs, immediate // integers, etc. SPV_OPERAND_TYPE_OPTIONAL_CIV, // A variable operand represents zero or more logical operands. // In an instruction definition, this may only appear at the end of the // operand types. FIRST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID), SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER, // A sequence of zero or more pairs of (typed literal integer, Id). // Expands to zero or more: // (SPV_OPERAND_TYPE_TYPED_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID) // where the literal number must always be an integer of some sort. SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID, // A sequence of zero or more pairs of (Id, Literal integer) LAST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER), // The following are concrete enum types from the DebugInfo extended // instruction set. SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, // DebugInfo Sec 3.2. A mask. SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // DebugInfo Sec 3.3 SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE, // DebugInfo Sec 3.4 SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER, // DebugInfo Sec 3.5 SPV_OPERAND_TYPE_DEBUG_OPERATION, // DebugInfo Sec 3.6 // The following are concrete enum types from the OpenCL.DebugInfo.100 // extended instruction set. SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS, // Sec 3.2. A Mask SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // Sec 3.3 SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE, // Sec 3.4 SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER, // Sec 3.5 SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION, // Sec 3.6 SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY, // Sec 3.7 // The following are concrete enum types from SPV_INTEL_float_controls2 // https://github.com/intel/llvm/blob/39fa9b0cbfbae88327118990a05c5b387b56d2ef/sycl/doc/extensions/SPIRV/SPV_INTEL_float_controls2.asciidoc SPV_OPERAND_TYPE_FPDENORM_MODE, // Sec 3.17 FP Denorm Mode SPV_OPERAND_TYPE_FPOPERATION_MODE, // Sec 3.18 FP Operation Mode // A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177 SPV_OPERAND_TYPE_QUANTIZATION_MODES, // A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177 SPV_OPERAND_TYPE_OVERFLOW_MODES, // Concrete operand types for the provisional Vulkan ray tracing feature. SPV_OPERAND_TYPE_RAY_FLAGS, // SPIR-V Sec 3.RF SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION, // SPIR-V Sec 3.RQIntersection SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE, // SPIR-V Sec // 3.RQCommitted SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE, // SPIR-V Sec // 3.RQCandidate // Concrete operand types for integer dot product. // Packed vector format SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT, // SPIR-V Sec 3.x // An optional packed vector format SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT, // This is a sentinel value, and does not represent an operand type. // It should come last. SPV_OPERAND_TYPE_NUM_OPERAND_TYPES, SPV_FORCE_32_BIT_ENUM(spv_operand_type_t) } spv_operand_type_t; // Returns true if the given type is concrete. bool spvOperandIsConcrete(spv_operand_type_t type); // Returns true if the given type is concrete and also a mask. bool spvOperandIsConcreteMask(spv_operand_type_t type); typedef enum spv_ext_inst_type_t { SPV_EXT_INST_TYPE_NONE = 0, SPV_EXT_INST_TYPE_GLSL_STD_450, SPV_EXT_INST_TYPE_OPENCL_STD, SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER, SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX, SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER, SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT, SPV_EXT_INST_TYPE_DEBUGINFO, SPV_EXT_INST_TYPE_OPENCL_DEBUGINFO_100, SPV_EXT_INST_TYPE_NONSEMANTIC_CLSPVREFLECTION, SPV_EXT_INST_TYPE_NONSEMANTIC_VULKAN_DEBUGINFO_100, // Multiple distinct extended instruction set types could return this // value, if they are prefixed with NonSemantic. and are otherwise // unrecognised SPV_EXT_INST_TYPE_NONSEMANTIC_UNKNOWN, SPV_FORCE_32_BIT_ENUM(spv_ext_inst_type_t) } spv_ext_inst_type_t; // This determines at a high level the kind of a binary-encoded literal // number, but not the bit width. // In principle, these could probably be folded into new entries in // spv_operand_type_t. But then we'd have some special case differences // between the assembler and disassembler. typedef enum spv_number_kind_t { SPV_NUMBER_NONE = 0, // The default for value initialization. SPV_NUMBER_UNSIGNED_INT, SPV_NUMBER_SIGNED_INT, SPV_NUMBER_FLOATING, } spv_number_kind_t; typedef enum spv_text_to_binary_options_t { SPV_TEXT_TO_BINARY_OPTION_NONE = SPV_BIT(0), // Numeric IDs in the binary will have the same values as in the source. // Non-numeric IDs are allocated by filling in the gaps, starting with 1 // and going up. SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS = SPV_BIT(1), SPV_FORCE_32_BIT_ENUM(spv_text_to_binary_options_t) } spv_text_to_binary_options_t; typedef enum spv_binary_to_text_options_t { SPV_BINARY_TO_TEXT_OPTION_NONE = SPV_BIT(0), SPV_BINARY_TO_TEXT_OPTION_PRINT = SPV_BIT(1), SPV_BINARY_TO_TEXT_OPTION_COLOR = SPV_BIT(2), SPV_BINARY_TO_TEXT_OPTION_INDENT = SPV_BIT(3), SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET = SPV_BIT(4), // Do not output the module header as leading comments in the assembly. SPV_BINARY_TO_TEXT_OPTION_NO_HEADER = SPV_BIT(5), // Use friendly names where possible. The heuristic may expand over // time, but will use common names for scalar types, and debug names from // OpName instructions. SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES = SPV_BIT(6), // Add some comments to the generated assembly SPV_BINARY_TO_TEXT_OPTION_COMMENT = SPV_BIT(7), SPV_FORCE_32_BIT_ENUM(spv_binary_to_text_options_t) } spv_binary_to_text_options_t; // Constants // The default id bound is to the minimum value for the id limit // in the spir-v specification under the section "Universal Limits". const uint32_t kDefaultMaxIdBound = 0x3FFFFF; // Structures // Information about an operand parsed from a binary SPIR-V module. // Note that the values are not included. You still need access to the binary // to extract the values. typedef struct spv_parsed_operand_t { // Location of the operand, in words from the start of the instruction. uint16_t offset; // Number of words occupied by this operand. uint16_t num_words; // The "concrete" operand type. See the definition of spv_operand_type_t // for details. spv_operand_type_t type; // If type is a literal number type, then number_kind says whether it's // a signed integer, an unsigned integer, or a floating point number. spv_number_kind_t number_kind; // The number of bits for a literal number type. uint32_t number_bit_width; } spv_parsed_operand_t; // An instruction parsed from a binary SPIR-V module. typedef struct spv_parsed_instruction_t { // An array of words for this instruction, in native endianness. const uint32_t* words; // The number of words in this instruction. uint16_t num_words; uint16_t opcode; // The extended instruction type, if opcode is OpExtInst. Otherwise // this is the "none" value. spv_ext_inst_type_t ext_inst_type; // The type id, or 0 if this instruction doesn't have one. uint32_t type_id; // The result id, or 0 if this instruction doesn't have one. uint32_t result_id; // The array of parsed operands. const spv_parsed_operand_t* operands; uint16_t num_operands; } spv_parsed_instruction_t; typedef struct spv_const_binary_t { const uint32_t* code; const size_t wordCount; } spv_const_binary_t; typedef struct spv_binary_t { uint32_t* code; size_t wordCount; } spv_binary_t; typedef struct spv_text_t { const char* str; size_t length; } spv_text_t; typedef struct spv_position_t { size_t line; size_t column; size_t index; } spv_position_t; typedef struct spv_diagnostic_t { spv_position_t position; char* error; bool isTextSource; } spv_diagnostic_t; // Opaque struct containing the context used to operate on a SPIR-V module. // Its object is used by various translation API functions. typedef struct spv_context_t spv_context_t; typedef struct spv_validator_options_t spv_validator_options_t; typedef struct spv_optimizer_options_t spv_optimizer_options_t; typedef struct spv_reducer_options_t spv_reducer_options_t; typedef struct spv_fuzzer_options_t spv_fuzzer_options_t; // Type Definitions typedef spv_const_binary_t* spv_const_binary; typedef spv_binary_t* spv_binary; typedef spv_text_t* spv_text; typedef spv_position_t* spv_position; typedef spv_diagnostic_t* spv_diagnostic; typedef const spv_context_t* spv_const_context; typedef spv_context_t* spv_context; typedef spv_validator_options_t* spv_validator_options; typedef const spv_validator_options_t* spv_const_validator_options; typedef spv_optimizer_options_t* spv_optimizer_options; typedef const spv_optimizer_options_t* spv_const_optimizer_options; typedef spv_reducer_options_t* spv_reducer_options; typedef const spv_reducer_options_t* spv_const_reducer_options; typedef spv_fuzzer_options_t* spv_fuzzer_options; typedef const spv_fuzzer_options_t* spv_const_fuzzer_options; // Platform API // Returns the SPIRV-Tools software version as a null-terminated string. // The contents of the underlying storage is valid for the remainder of // the process. SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionString(void); // Returns a null-terminated string containing the name of the project, // the software version string, and commit details. // The contents of the underlying storage is valid for the remainder of // the process. SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionDetailsString(void); // Certain target environments impose additional restrictions on SPIR-V, so it's // often necessary to specify which one applies. SPV_ENV_UNIVERSAL_* implies an // environment-agnostic SPIR-V. // // When an API method needs to derive a SPIR-V version from a target environment // (from the spv_context object), the method will choose the highest version of // SPIR-V supported by the target environment. Examples: // SPV_ENV_VULKAN_1_0 -> SPIR-V 1.0 // SPV_ENV_VULKAN_1_1 -> SPIR-V 1.3 // SPV_ENV_VULKAN_1_1_SPIRV_1_4 -> SPIR-V 1.4 // SPV_ENV_VULKAN_1_2 -> SPIR-V 1.5 // Consult the description of API entry points for specific rules. typedef enum { SPV_ENV_UNIVERSAL_1_0, // SPIR-V 1.0 latest revision, no other restrictions. SPV_ENV_VULKAN_1_0, // Vulkan 1.0 latest revision. SPV_ENV_UNIVERSAL_1_1, // SPIR-V 1.1 latest revision, no other restrictions. SPV_ENV_OPENCL_2_1, // OpenCL Full Profile 2.1 latest revision. SPV_ENV_OPENCL_2_2, // OpenCL Full Profile 2.2 latest revision. SPV_ENV_OPENGL_4_0, // OpenGL 4.0 plus GL_ARB_gl_spirv, latest revisions. SPV_ENV_OPENGL_4_1, // OpenGL 4.1 plus GL_ARB_gl_spirv, latest revisions. SPV_ENV_OPENGL_4_2, // OpenGL 4.2 plus GL_ARB_gl_spirv, latest revisions. SPV_ENV_OPENGL_4_3, // OpenGL 4.3 plus GL_ARB_gl_spirv, latest revisions. // There is no variant for OpenGL 4.4. SPV_ENV_OPENGL_4_5, // OpenGL 4.5 plus GL_ARB_gl_spirv, latest revisions. SPV_ENV_UNIVERSAL_1_2, // SPIR-V 1.2, latest revision, no other restrictions. SPV_ENV_OPENCL_1_2, // OpenCL Full Profile 1.2 plus cl_khr_il_program, // latest revision. SPV_ENV_OPENCL_EMBEDDED_1_2, // OpenCL Embedded Profile 1.2 plus // cl_khr_il_program, latest revision. SPV_ENV_OPENCL_2_0, // OpenCL Full Profile 2.0 plus cl_khr_il_program, // latest revision. SPV_ENV_OPENCL_EMBEDDED_2_0, // OpenCL Embedded Profile 2.0 plus // cl_khr_il_program, latest revision. SPV_ENV_OPENCL_EMBEDDED_2_1, // OpenCL Embedded Profile 2.1 latest revision. SPV_ENV_OPENCL_EMBEDDED_2_2, // OpenCL Embedded Profile 2.2 latest revision. SPV_ENV_UNIVERSAL_1_3, // SPIR-V 1.3 latest revision, no other restrictions. SPV_ENV_VULKAN_1_1, // Vulkan 1.1 latest revision. SPV_ENV_WEBGPU_0, // DEPRECATED, may be removed in the future. SPV_ENV_UNIVERSAL_1_4, // SPIR-V 1.4 latest revision, no other restrictions. // Vulkan 1.1 with VK_KHR_spirv_1_4, i.e. SPIR-V 1.4 binary. SPV_ENV_VULKAN_1_1_SPIRV_1_4, SPV_ENV_UNIVERSAL_1_5, // SPIR-V 1.5 latest revision, no other restrictions. SPV_ENV_VULKAN_1_2, // Vulkan 1.2 latest revision. } spv_target_env; // SPIR-V Validator can be parameterized with the following Universal Limits. typedef enum { spv_validator_limit_max_struct_members, spv_validator_limit_max_struct_depth, spv_validator_limit_max_local_variables, spv_validator_limit_max_global_variables, spv_validator_limit_max_switch_branches, spv_validator_limit_max_function_args, spv_validator_limit_max_control_flow_nesting_depth, spv_validator_limit_max_access_chain_indexes, spv_validator_limit_max_id_bound, } spv_validator_limit; // Returns a string describing the given SPIR-V target environment. SPIRV_TOOLS_EXPORT const char* spvTargetEnvDescription(spv_target_env env); // Parses s into *env and returns true if successful. If unparsable, returns // false and sets *env to SPV_ENV_UNIVERSAL_1_0. SPIRV_TOOLS_EXPORT bool spvParseTargetEnv(const char* s, spv_target_env* env); // Determines the target env value with the least features but which enables // the given Vulkan and SPIR-V versions. If such a target is supported, returns // true and writes the value to |env|, otherwise returns false. // // The Vulkan version is given as an unsigned 32-bit number as specified in // Vulkan section "29.2.1 Version Numbers": the major version number appears // in bits 22 to 21, and the minor version is in bits 12 to 21. The SPIR-V // version is given in the SPIR-V version header word: major version in bits // 16 to 23, and minor version in bits 8 to 15. SPIRV_TOOLS_EXPORT bool spvParseVulkanEnv(uint32_t vulkan_ver, uint32_t spirv_ver, spv_target_env* env); // Creates a context object for most of the SPIRV-Tools API. // Returns null if env is invalid. // // See specific API calls for how the target environment is interpeted // (particularly assembly and validation). SPIRV_TOOLS_EXPORT spv_context spvContextCreate(spv_target_env env); // Destroys the given context object. SPIRV_TOOLS_EXPORT void spvContextDestroy(spv_context context); // Creates a Validator options object with default options. Returns a valid // options object. The object remains valid until it is passed into // spvValidatorOptionsDestroy. SPIRV_TOOLS_EXPORT spv_validator_options spvValidatorOptionsCreate(void); // Destroys the given Validator options object. SPIRV_TOOLS_EXPORT void spvValidatorOptionsDestroy( spv_validator_options options); // Records the maximum Universal Limit that is considered valid in the given // Validator options object. argument must be a valid options object. SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniversalLimit( spv_validator_options options, spv_validator_limit limit_type, uint32_t limit); // Record whether or not the validator should relax the rules on types for // stores to structs. When relaxed, it will allow a type mismatch as long as // the types are structs with the same layout. Two structs have the same layout // if // // 1) the members of the structs are either the same type or are structs with // same layout, and // // 2) the decorations that affect the memory layout are identical for both // types. Other decorations are not relevant. SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxStoreStruct( spv_validator_options options, bool val); // Records whether or not the validator should relax the rules on pointer usage // in logical addressing mode. // // When relaxed, it will allow the following usage cases of pointers: // 1) OpVariable allocating an object whose type is a pointer type // 2) OpReturnValue returning a pointer value SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxLogicalPointer( spv_validator_options options, bool val); // Records whether or not the validator should relax the rules because it is // expected that the optimizations will make the code legal. // // When relaxed, it will allow the following: // 1) It will allow relaxed logical pointers. Setting this option will also // set that option. // 2) Pointers that are pass as parameters to function calls do not have to // match the storage class of the formal parameter. // 3) Pointers that are actaul parameters on function calls do not have to point // to the same type pointed as the formal parameter. The types just need to // logically match. // 4) GLSLstd450 Interpolate* instructions can have a load of an interpolant // for a first argument. SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetBeforeHlslLegalization( spv_validator_options options, bool val); // Records whether the validator should use "relaxed" block layout rules. // Relaxed layout rules are described by Vulkan extension // VK_KHR_relaxed_block_layout, and they affect uniform blocks, storage blocks, // and push constants. // // This is enabled by default when targeting Vulkan 1.1 or later. // Relaxed layout is more permissive than the default rules in Vulkan 1.0. SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxBlockLayout( spv_validator_options options, bool val); // Records whether the validator should use standard block layout rules for // uniform blocks. SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniformBufferStandardLayout( spv_validator_options options, bool val); // Records whether the validator should use "scalar" block layout rules. // Scalar layout rules are more permissive than relaxed block layout. // // See Vulkan extnesion VK_EXT_scalar_block_layout. The scalar alignment is // defined as follows: // - scalar alignment of a scalar is the scalar size // - scalar alignment of a vector is the scalar alignment of its component // - scalar alignment of a matrix is the scalar alignment of its component // - scalar alignment of an array is the scalar alignment of its element // - scalar alignment of a struct is the max scalar alignment among its // members // // For a struct in Uniform, StorageClass, or PushConstant: // - a member Offset must be a multiple of the member's scalar alignment // - ArrayStride or MatrixStride must be a multiple of the array or matrix // scalar alignment SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetScalarBlockLayout( spv_validator_options options, bool val); // Records whether the validator should use "scalar" block layout // rules (as defined above) for Workgroup blocks. See Vulkan // extension VK_KHR_workgroup_memory_explicit_layout. SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetWorkgroupScalarBlockLayout( spv_validator_options options, bool val); // Records whether or not the validator should skip validating standard // uniform/storage block layout. SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetSkipBlockLayout( spv_validator_options options, bool val); // Creates an optimizer options object with default options. Returns a valid // options object. The object remains valid until it is passed into // |spvOptimizerOptionsDestroy|. SPIRV_TOOLS_EXPORT spv_optimizer_options spvOptimizerOptionsCreate(void); // Destroys the given optimizer options object. SPIRV_TOOLS_EXPORT void spvOptimizerOptionsDestroy( spv_optimizer_options options); // Records whether or not the optimizer should run the validator before // optimizing. If |val| is true, the validator will be run. SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetRunValidator( spv_optimizer_options options, bool val); // Records the validator options that should be passed to the validator if it is // run. SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetValidatorOptions( spv_optimizer_options options, spv_validator_options val); // Records the maximum possible value for the id bound. SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetMaxIdBound( spv_optimizer_options options, uint32_t val); // Records whether all bindings within the module should be preserved. SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveBindings( spv_optimizer_options options, bool val); // Records whether all specialization constants within the module // should be preserved. SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveSpecConstants( spv_optimizer_options options, bool val); // Creates a reducer options object with default options. Returns a valid // options object. The object remains valid until it is passed into // |spvReducerOptionsDestroy|. SPIRV_TOOLS_EXPORT spv_reducer_options spvReducerOptionsCreate(void); // Destroys the given reducer options object. SPIRV_TOOLS_EXPORT void spvReducerOptionsDestroy(spv_reducer_options options); // Sets the maximum number of reduction steps that should run before the reducer // gives up. SPIRV_TOOLS_EXPORT void spvReducerOptionsSetStepLimit( spv_reducer_options options, uint32_t step_limit); // Sets the fail-on-validation-error option; if true, the reducer will return // kStateInvalid if a reduction step yields a state that fails SPIR-V // validation. Otherwise, an invalid state is treated as uninteresting and the // reduction backtracks and continues. SPIRV_TOOLS_EXPORT void spvReducerOptionsSetFailOnValidationError( spv_reducer_options options, bool fail_on_validation_error); // Sets the function that the reducer should target. If set to zero the reducer // will target all functions as well as parts of the module that lie outside // functions. Otherwise the reducer will restrict reduction to the function // with result id |target_function|, which is required to exist. SPIRV_TOOLS_EXPORT void spvReducerOptionsSetTargetFunction( spv_reducer_options options, uint32_t target_function); // Creates a fuzzer options object with default options. Returns a valid // options object. The object remains valid until it is passed into // |spvFuzzerOptionsDestroy|. SPIRV_TOOLS_EXPORT spv_fuzzer_options spvFuzzerOptionsCreate(void); // Destroys the given fuzzer options object. SPIRV_TOOLS_EXPORT void spvFuzzerOptionsDestroy(spv_fuzzer_options options); // Enables running the validator after every transformation is applied during // a replay. SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableReplayValidation( spv_fuzzer_options options); // Sets the seed with which the random number generator used by the fuzzer // should be initialized. SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetRandomSeed( spv_fuzzer_options options, uint32_t seed); // Sets the range of transformations that should be applied during replay: 0 // means all transformations, +N means the first N transformations, -N means all // except the final N transformations. SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetReplayRange( spv_fuzzer_options options, int32_t replay_range); // Sets the maximum number of steps that the shrinker should take before giving // up. SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetShrinkerStepLimit( spv_fuzzer_options options, uint32_t shrinker_step_limit); // Enables running the validator after every pass is applied during a fuzzing // run. SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableFuzzerPassValidation( spv_fuzzer_options options); // Enables all fuzzer passes during a fuzzing run (instead of a random subset // of passes). SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableAllPasses( spv_fuzzer_options options); // Encodes the given SPIR-V assembly text to its binary representation. The // length parameter specifies the number of bytes for text. Encoded binary will // be stored into *binary. Any error will be written into *diagnostic if // diagnostic is non-null, otherwise the context's message consumer will be // used. The generated binary is independent of the context and may outlive it. // The SPIR-V binary version is set to the highest version of SPIR-V supported // by the context's target environment. SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinary(const spv_const_context context, const char* text, const size_t length, spv_binary* binary, spv_diagnostic* diagnostic); // Encodes the given SPIR-V assembly text to its binary representation. Same as // spvTextToBinary but with options. The options parameter is a bit field of // spv_text_to_binary_options_t. SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinaryWithOptions( const spv_const_context context, const char* text, const size_t length, const uint32_t options, spv_binary* binary, spv_diagnostic* diagnostic); // Frees an allocated text stream. This is a no-op if the text parameter // is a null pointer. SPIRV_TOOLS_EXPORT void spvTextDestroy(spv_text text); // Decodes the given SPIR-V binary representation to its assembly text. The // word_count parameter specifies the number of words for binary. The options // parameter is a bit field of spv_binary_to_text_options_t. Decoded text will // be stored into *text. Any error will be written into *diagnostic if // diagnostic is non-null, otherwise the context's message consumer will be // used. SPIRV_TOOLS_EXPORT spv_result_t spvBinaryToText(const spv_const_context context, const uint32_t* binary, const size_t word_count, const uint32_t options, spv_text* text, spv_diagnostic* diagnostic); // Frees a binary stream from memory. This is a no-op if binary is a null // pointer. SPIRV_TOOLS_EXPORT void spvBinaryDestroy(spv_binary binary); // Validates a SPIR-V binary for correctness. Any errors will be written into // *diagnostic if diagnostic is non-null, otherwise the context's message // consumer will be used. // // Validate for SPIR-V spec rules for the SPIR-V version named in the // binary's header (at word offset 1). Additionally, if the context target // environment is a client API (such as Vulkan 1.1), then validate for that // client API version, to the extent that it is verifiable from data in the // binary itself. SPIRV_TOOLS_EXPORT spv_result_t spvValidate(const spv_const_context context, const spv_const_binary binary, spv_diagnostic* diagnostic); // Validates a SPIR-V binary for correctness. Uses the provided Validator // options. Any errors will be written into *diagnostic if diagnostic is // non-null, otherwise the context's message consumer will be used. // // Validate for SPIR-V spec rules for the SPIR-V version named in the // binary's header (at word offset 1). Additionally, if the context target // environment is a client API (such as Vulkan 1.1), then validate for that // client API version, to the extent that it is verifiable from data in the // binary itself, or in the validator options. SPIRV_TOOLS_EXPORT spv_result_t spvValidateWithOptions( const spv_const_context context, const spv_const_validator_options options, const spv_const_binary binary, spv_diagnostic* diagnostic); // Validates a raw SPIR-V binary for correctness. Any errors will be written // into *diagnostic if diagnostic is non-null, otherwise the context's message // consumer will be used. SPIRV_TOOLS_EXPORT spv_result_t spvValidateBinary(const spv_const_context context, const uint32_t* words, const size_t num_words, spv_diagnostic* diagnostic); // Creates a diagnostic object. The position parameter specifies the location in // the text/binary stream. The message parameter, copied into the diagnostic // object, contains the error message to display. SPIRV_TOOLS_EXPORT spv_diagnostic spvDiagnosticCreate(const spv_position position, const char* message); // Destroys a diagnostic object. This is a no-op if diagnostic is a null // pointer. SPIRV_TOOLS_EXPORT void spvDiagnosticDestroy(spv_diagnostic diagnostic); // Prints the diagnostic to stderr. SPIRV_TOOLS_EXPORT spv_result_t spvDiagnosticPrint(const spv_diagnostic diagnostic); // Gets the name of an instruction, without the "Op" prefix. SPIRV_TOOLS_EXPORT const char* spvOpcodeString(const uint32_t opcode); // The binary parser interface. // A pointer to a function that accepts a parsed SPIR-V header. // The integer arguments are the 32-bit words from the header, as specified // in SPIR-V 1.0 Section 2.3 Table 1. // The function should return SPV_SUCCESS if parsing should continue. typedef spv_result_t (*spv_parsed_header_fn_t)( void* user_data, spv_endianness_t endian, uint32_t magic, uint32_t version, uint32_t generator, uint32_t id_bound, uint32_t reserved); // A pointer to a function that accepts a parsed SPIR-V instruction. // The parsed_instruction value is transient: it may be overwritten // or released immediately after the function has returned. That also // applies to the words array member of the parsed instruction. The // function should return SPV_SUCCESS if and only if parsing should // continue. typedef spv_result_t (*spv_parsed_instruction_fn_t)( void* user_data, const spv_parsed_instruction_t* parsed_instruction); // Parses a SPIR-V binary, specified as counted sequence of 32-bit words. // Parsing feedback is provided via two callbacks provided as function // pointers. Each callback function pointer can be a null pointer, in // which case it is never called. Otherwise, in a valid parse the // parsed-header callback is called once, and then the parsed-instruction // callback once for each instruction in the stream. The user_data parameter // is supplied as context to the callbacks. Returns SPV_SUCCESS on successful // parse where the callbacks always return SPV_SUCCESS. For an invalid parse, // returns a status code other than SPV_SUCCESS, and if diagnostic is non-null // also emits a diagnostic. If diagnostic is null the context's message consumer // will be used to emit any errors. If a callback returns anything other than // SPV_SUCCESS, then that status code is returned, no further callbacks are // issued, and no additional diagnostics are emitted. SPIRV_TOOLS_EXPORT spv_result_t spvBinaryParse( const spv_const_context context, void* user_data, const uint32_t* words, const size_t num_words, spv_parsed_header_fn_t parse_header, spv_parsed_instruction_fn_t parse_instruction, spv_diagnostic* diagnostic); #ifdef __cplusplus } #endif #endif // INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_