// Copyright (c) 2021 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_OPT_CONTROL_DEPENDENCE_H_ #define SOURCE_OPT_CONTROL_DEPENDENCE_H_ #include #include #include #include #include #include #include "source/opt/cfg.h" #include "source/opt/dominator_analysis.h" namespace spvtools { namespace opt { class ControlDependence { public: // The label of the source of this dependence, i.e. the block on which the // target is dependent on. // A |source_bb_id| of 0 represents an "entry" dependence, meaning that the // execution of |target_bb_id| is only dependent on entry to the function. uint32_t source_bb_id() const { return source_bb_id_; } // The label of the target of this dependence, i.e. the block which is // dependent on the source. uint32_t target_bb_id() const { return target_bb_id_; } // The label of the target of the *branch* for this dependence. // Equal to the ID of the entry block for entry dependences. // // For example, for the partial CFG pictured below: // 1 ---> 2 ---> 4 ---> 6 // \ \ ^ // \-> 3 \-> 5 -----/ // Block 6 is control dependent on block 1, but this dependence comes from the // branch 1 -> 2, so in this case the branch target ID would be 2. uint32_t branch_target_bb_id() const { return branch_target_bb_id_; } // Create a direct control dependence from BB ID |source| to |target|. ControlDependence(uint32_t source, uint32_t target) : source_bb_id_(source), target_bb_id_(target), branch_target_bb_id_(target) {} // Create a control dependence from BB ID |source| to |target| through the // branch from |source| to |branch_target|. ControlDependence(uint32_t source, uint32_t target, uint32_t branch_target) : source_bb_id_(source), target_bb_id_(target), branch_target_bb_id_(branch_target) {} // Gets the ID of the conditional value for the branch corresponding to this // control dependence. This is the first input operand for both // OpConditionalBranch and OpSwitch. // Returns 0 for entry dependences. uint32_t GetConditionID(const CFG& cfg) const; bool operator==(const ControlDependence& other) const; bool operator!=(const ControlDependence& other) const { return !(*this == other); } // Comparison operators, ordered lexicographically. Total ordering. bool operator<(const ControlDependence& other) const; bool operator>(const ControlDependence& other) const { return other < *this; } bool operator<=(const ControlDependence& other) const { return !(*this > other); } bool operator>=(const ControlDependence& other) const { return !(*this < other); } private: uint32_t source_bb_id_; uint32_t target_bb_id_; uint32_t branch_target_bb_id_; }; // Prints |dep| to |os| in a human-readable way. For example, // 1->2 (target_bb_id = branch_target_bb_id = 2) // 3->4 through 5 (target_bb_id = 4, branch_target_bb_id = 5) std::ostream& operator<<(std::ostream& os, const ControlDependence& dep); // Represents the control dependence graph. A basic block is control dependent // on another if the result of that block (e.g. the condition of a conditional // branch) influences whether it is executed or not. More formally, a block A is // control dependent on B iff: // 1. there exists a path from A to the exit node that does *not* go through B // (i.e., A does not postdominate B), and // 2. there exists a path B -> b_1 -> ... -> b_n -> A such that A post-dominates // all nodes b_i. class ControlDependenceAnalysis { public: // Map basic block labels to control dependencies/dependents. // Not guaranteed to be in any particular order. using ControlDependenceList = std::vector; using ControlDependenceListMap = std::unordered_map; // 0, the label number for the pseudo entry block. // All control dependences on the pseudo entry block are of type kEntry, and // vice versa. static constexpr uint32_t kPseudoEntryBlock = 0; // Build the control dependence graph for the given control flow graph |cfg| // and corresponding post-dominator analysis |pdom|. void ComputeControlDependenceGraph(const CFG& cfg, const PostDominatorAnalysis& pdom); // Get the list of the nodes that depend on a block. // Return value is not guaranteed to be in any particular order. const ControlDependenceList& GetDependenceTargets(uint32_t block) const { return forward_nodes_.at(block); } // Get the list of the nodes on which a block depends on. // Return value is not guaranteed to be in any particular order. const ControlDependenceList& GetDependenceSources(uint32_t block) const { return reverse_nodes_.at(block); } // Runs the function |f| on each block label in the CDG. If any iteration // returns false, immediately stops iteration and returns false. Otherwise // returns true. Nodes are iterated in some undefined order, including the // pseudo-entry block. bool WhileEachBlockLabel(std::function f) const { for (const auto& entry : forward_nodes_) { if (!f(entry.first)) { return false; } } return true; } // Runs the function |f| on each block label in the CDG. Nodes are iterated in // some undefined order, including the pseudo-entry block. void ForEachBlockLabel(std::function f) const { WhileEachBlockLabel([&f](uint32_t label) { f(label); return true; }); } // Returns true if the block |id| exists in the control dependence graph. // This can be false even if the block exists in the function when it is part // of an infinite loop, since it is not part of the post-dominator tree. bool HasBlock(uint32_t id) const { return forward_nodes_.count(id) > 0; } // Returns true if block |a| is dependent on block |b|. bool IsDependent(uint32_t a, uint32_t b) const { if (!HasBlock(a)) return false; // BBs tend to have more dependents (targets) than they are dependent on // (sources), so search sources. const ControlDependenceList& a_sources = GetDependenceSources(a); return std::find_if(a_sources.begin(), a_sources.end(), [b](const ControlDependence& dep) { return dep.source_bb_id() == b; }) != a_sources.end(); } private: // Computes the post-dominance frontiers (i.e. the reverse CDG) for each node // in the post-dominator tree. Only modifies reverse_nodes_; forward_nodes_ is // not modified. void ComputePostDominanceFrontiers(const CFG& cfg, const PostDominatorAnalysis& pdom); // Computes the post-dominance frontier for a specific node |pdom_node| in the // post-dominator tree. Result is placed in reverse_nodes_[pdom_node.id()]. void ComputePostDominanceFrontierForNode(const CFG& cfg, const PostDominatorAnalysis& pdom, uint32_t function_entry, const DominatorTreeNode& pdom_node); // Computes the forward graph (forward_nodes_) from the reverse graph // (reverse_nodes_). void ComputeForwardGraphFromReverse(); ControlDependenceListMap forward_nodes_; ControlDependenceListMap reverse_nodes_; }; } // namespace opt } // namespace spvtools #endif // SOURCE_OPT_CONTROL_DEPENDENCE_H_