// Copyright (c) 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/opt/register_pressure.h" #include #include #include "source/opt/cfg.h" #include "source/opt/def_use_manager.h" #include "source/opt/dominator_tree.h" #include "source/opt/function.h" #include "source/opt/ir_context.h" #include "source/opt/iterator.h" namespace spvtools { namespace opt { namespace { // Predicate for the FilterIterator to only consider instructions that are not // phi instructions defined in the basic block |bb|. class ExcludePhiDefinedInBlock { public: ExcludePhiDefinedInBlock(IRContext* context, const BasicBlock* bb) : context_(context), bb_(bb) {} bool operator()(Instruction* insn) const { return !(insn->opcode() == SpvOpPhi && context_->get_instr_block(insn) == bb_); } private: IRContext* context_; const BasicBlock* bb_; }; // Returns true if |insn| generates a SSA register that is likely to require a // physical register. bool CreatesRegisterUsage(Instruction* insn) { if (!insn->HasResultId()) return false; if (insn->opcode() == SpvOpUndef) return false; if (IsConstantInst(insn->opcode())) return false; if (insn->opcode() == SpvOpLabel) return false; return true; } // Compute the register liveness for each basic block of a function. This also // fill-up some information about the pick register usage and a break down of // register usage. This implements: "A non-iterative data-flow algorithm for // computing liveness sets in strict ssa programs" from Boissinot et al. class ComputeRegisterLiveness { public: ComputeRegisterLiveness(RegisterLiveness* reg_pressure, Function* f) : reg_pressure_(reg_pressure), context_(reg_pressure->GetContext()), function_(f), cfg_(*reg_pressure->GetContext()->cfg()), def_use_manager_(*reg_pressure->GetContext()->get_def_use_mgr()), dom_tree_( reg_pressure->GetContext()->GetDominatorAnalysis(f)->GetDomTree()), loop_desc_(*reg_pressure->GetContext()->GetLoopDescriptor(f)) {} // Computes the register liveness for |function_| and then estimate the // register usage. The liveness algorithm works in 2 steps: // - First, compute the liveness for each basic blocks, but will ignore any // back-edge; // - Second, walk loop forest to propagate registers crossing back-edges // (add iterative values into the liveness set). void Compute() { cfg_.ForEachBlockInPostOrder(&*function_->begin(), [this](BasicBlock* bb) { ComputePartialLiveness(bb); }); DoLoopLivenessUnification(); EvaluateRegisterRequirements(); } private: // Registers all SSA register used by successors of |bb| in their phi // instructions. void ComputePhiUses(const BasicBlock& bb, RegisterLiveness::RegionRegisterLiveness::LiveSet* live) { uint32_t bb_id = bb.id(); bb.ForEachSuccessorLabel([live, bb_id, this](uint32_t sid) { BasicBlock* succ_bb = cfg_.block(sid); succ_bb->ForEachPhiInst([live, bb_id, this](const Instruction* phi) { for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) { if (phi->GetSingleWordInOperand(i + 1) == bb_id) { Instruction* insn_op = def_use_manager_.GetDef(phi->GetSingleWordInOperand(i)); if (CreatesRegisterUsage(insn_op)) { live->insert(insn_op); break; } } } }); }); } // Computes register liveness for each basic blocks but ignores all // back-edges. void ComputePartialLiveness(BasicBlock* bb) { assert(reg_pressure_->Get(bb) == nullptr && "Basic block already processed"); RegisterLiveness::RegionRegisterLiveness* live_inout = reg_pressure_->GetOrInsert(bb->id()); ComputePhiUses(*bb, &live_inout->live_out_); const BasicBlock* cbb = bb; cbb->ForEachSuccessorLabel([&live_inout, bb, this](uint32_t sid) { // Skip back edges. if (dom_tree_.Dominates(sid, bb->id())) { return; } BasicBlock* succ_bb = cfg_.block(sid); RegisterLiveness::RegionRegisterLiveness* succ_live_inout = reg_pressure_->Get(succ_bb); assert(succ_live_inout && "Successor liveness analysis was not performed"); ExcludePhiDefinedInBlock predicate(context_, succ_bb); auto filter = MakeFilterIteratorRange(succ_live_inout->live_in_.begin(), succ_live_inout->live_in_.end(), predicate); live_inout->live_out_.insert(filter.begin(), filter.end()); }); live_inout->live_in_ = live_inout->live_out_; for (Instruction& insn : make_range(bb->rbegin(), bb->rend())) { if (insn.opcode() == SpvOpPhi) { live_inout->live_in_.insert(&insn); break; } live_inout->live_in_.erase(&insn); insn.ForEachInId([live_inout, this](uint32_t* id) { Instruction* insn_op = def_use_manager_.GetDef(*id); if (CreatesRegisterUsage(insn_op)) { live_inout->live_in_.insert(insn_op); } }); } } // Propagates the register liveness information of each loop iterators. void DoLoopLivenessUnification() { for (const Loop* loop : *loop_desc_.GetDummyRootLoop()) { DoLoopLivenessUnification(*loop); } } // Propagates the register liveness information of loop iterators trough-out // the loop body. void DoLoopLivenessUnification(const Loop& loop) { auto blocks_in_loop = MakeFilterIteratorRange( loop.GetBlocks().begin(), loop.GetBlocks().end(), [&loop, this](uint32_t bb_id) { return bb_id != loop.GetHeaderBlock()->id() && loop_desc_[bb_id] == &loop; }); RegisterLiveness::RegionRegisterLiveness* header_live_inout = reg_pressure_->Get(loop.GetHeaderBlock()); assert(header_live_inout && "Liveness analysis was not performed for the current block"); ExcludePhiDefinedInBlock predicate(context_, loop.GetHeaderBlock()); auto live_loop = MakeFilterIteratorRange(header_live_inout->live_in_.begin(), header_live_inout->live_in_.end(), predicate); for (uint32_t bb_id : blocks_in_loop) { BasicBlock* bb = cfg_.block(bb_id); RegisterLiveness::RegionRegisterLiveness* live_inout = reg_pressure_->Get(bb); live_inout->live_in_.insert(live_loop.begin(), live_loop.end()); live_inout->live_out_.insert(live_loop.begin(), live_loop.end()); } for (const Loop* inner_loop : loop) { RegisterLiveness::RegionRegisterLiveness* live_inout = reg_pressure_->Get(inner_loop->GetHeaderBlock()); live_inout->live_in_.insert(live_loop.begin(), live_loop.end()); live_inout->live_out_.insert(live_loop.begin(), live_loop.end()); DoLoopLivenessUnification(*inner_loop); } } // Get the number of required registers for this each basic block. void EvaluateRegisterRequirements() { for (BasicBlock& bb : *function_) { RegisterLiveness::RegionRegisterLiveness* live_inout = reg_pressure_->Get(bb.id()); assert(live_inout != nullptr && "Basic block not processed"); size_t reg_count = live_inout->live_out_.size(); for (Instruction* insn : live_inout->live_out_) { live_inout->AddRegisterClass(insn); } live_inout->used_registers_ = reg_count; std::unordered_set die_in_block; for (Instruction& insn : make_range(bb.rbegin(), bb.rend())) { // If it is a phi instruction, the register pressure will not change // anymore. if (insn.opcode() == SpvOpPhi) { break; } insn.ForEachInId( [live_inout, &die_in_block, ®_count, this](uint32_t* id) { Instruction* op_insn = def_use_manager_.GetDef(*id); if (!CreatesRegisterUsage(op_insn) || live_inout->live_out_.count(op_insn)) { // already taken into account. return; } if (!die_in_block.count(*id)) { live_inout->AddRegisterClass(def_use_manager_.GetDef(*id)); reg_count++; die_in_block.insert(*id); } }); live_inout->used_registers_ = std::max(live_inout->used_registers_, reg_count); if (CreatesRegisterUsage(&insn)) { reg_count--; } } } } RegisterLiveness* reg_pressure_; IRContext* context_; Function* function_; CFG& cfg_; analysis::DefUseManager& def_use_manager_; DominatorTree& dom_tree_; LoopDescriptor& loop_desc_; }; } // namespace // Get the number of required registers for each basic block. void RegisterLiveness::RegionRegisterLiveness::AddRegisterClass( Instruction* insn) { assert(CreatesRegisterUsage(insn) && "Instruction does not use a register"); analysis::Type* type = insn->context()->get_type_mgr()->GetType(insn->type_id()); RegisterLiveness::RegisterClass reg_class{type, false}; insn->context()->get_decoration_mgr()->WhileEachDecoration( insn->result_id(), SpvDecorationUniform, [®_class](const Instruction&) { reg_class.is_uniform_ = true; return false; }); AddRegisterClass(reg_class); } void RegisterLiveness::Analyze(Function* f) { block_pressure_.clear(); ComputeRegisterLiveness(this, f).Compute(); } void RegisterLiveness::ComputeLoopRegisterPressure( const Loop& loop, RegionRegisterLiveness* loop_reg_pressure) const { loop_reg_pressure->Clear(); const RegionRegisterLiveness* header_live_inout = Get(loop.GetHeaderBlock()); loop_reg_pressure->live_in_ = header_live_inout->live_in_; std::unordered_set exit_blocks; loop.GetExitBlocks(&exit_blocks); for (uint32_t bb_id : exit_blocks) { const RegionRegisterLiveness* live_inout = Get(bb_id); loop_reg_pressure->live_out_.insert(live_inout->live_in_.begin(), live_inout->live_in_.end()); } std::unordered_set seen_insn; for (Instruction* insn : loop_reg_pressure->live_out_) { loop_reg_pressure->AddRegisterClass(insn); seen_insn.insert(insn->result_id()); } for (Instruction* insn : loop_reg_pressure->live_in_) { if (!seen_insn.count(insn->result_id())) { continue; } loop_reg_pressure->AddRegisterClass(insn); seen_insn.insert(insn->result_id()); } loop_reg_pressure->used_registers_ = 0; for (uint32_t bb_id : loop.GetBlocks()) { BasicBlock* bb = context_->cfg()->block(bb_id); const RegionRegisterLiveness* live_inout = Get(bb_id); assert(live_inout != nullptr && "Basic block not processed"); loop_reg_pressure->used_registers_ = std::max( loop_reg_pressure->used_registers_, live_inout->used_registers_); for (Instruction& insn : *bb) { if (insn.opcode() == SpvOpPhi || !CreatesRegisterUsage(&insn) || seen_insn.count(insn.result_id())) { continue; } loop_reg_pressure->AddRegisterClass(&insn); } } } void RegisterLiveness::SimulateFusion( const Loop& l1, const Loop& l2, RegionRegisterLiveness* sim_result) const { sim_result->Clear(); // Compute the live-in state: // sim_result.live_in = l1.live_in U l2.live_in // This assumes that |l1| does not generated register that is live-out for // |l1|. const RegionRegisterLiveness* l1_header_live_inout = Get(l1.GetHeaderBlock()); sim_result->live_in_ = l1_header_live_inout->live_in_; const RegionRegisterLiveness* l2_header_live_inout = Get(l2.GetHeaderBlock()); sim_result->live_in_.insert(l2_header_live_inout->live_in_.begin(), l2_header_live_inout->live_in_.end()); // The live-out set of the fused loop is the l2 live-out set. std::unordered_set exit_blocks; l2.GetExitBlocks(&exit_blocks); for (uint32_t bb_id : exit_blocks) { const RegionRegisterLiveness* live_inout = Get(bb_id); sim_result->live_out_.insert(live_inout->live_in_.begin(), live_inout->live_in_.end()); } // Compute the register usage information. std::unordered_set seen_insn; for (Instruction* insn : sim_result->live_out_) { sim_result->AddRegisterClass(insn); seen_insn.insert(insn->result_id()); } for (Instruction* insn : sim_result->live_in_) { if (!seen_insn.count(insn->result_id())) { continue; } sim_result->AddRegisterClass(insn); seen_insn.insert(insn->result_id()); } sim_result->used_registers_ = 0; // The loop fusion is injecting the l1 before the l2, the latch of l1 will be // connected to the header of l2. // To compute the register usage, we inject the loop live-in (union of l1 and // l2 live-in header blocks) into the the live in/out of each basic block of // l1 to get the peak register usage. We then repeat the operation to for l2 // basic blocks but in this case we inject the live-out of the latch of l1. auto live_loop = MakeFilterIteratorRange( sim_result->live_in_.begin(), sim_result->live_in_.end(), [&l1, &l2](Instruction* insn) { BasicBlock* bb = insn->context()->get_instr_block(insn); return insn->HasResultId() && !(insn->opcode() == SpvOpPhi && (bb == l1.GetHeaderBlock() || bb == l2.GetHeaderBlock())); }); for (uint32_t bb_id : l1.GetBlocks()) { BasicBlock* bb = context_->cfg()->block(bb_id); const RegionRegisterLiveness* live_inout_info = Get(bb_id); assert(live_inout_info != nullptr && "Basic block not processed"); RegionRegisterLiveness::LiveSet live_out = live_inout_info->live_out_; live_out.insert(live_loop.begin(), live_loop.end()); sim_result->used_registers_ = std::max(sim_result->used_registers_, live_inout_info->used_registers_ + live_out.size() - live_inout_info->live_out_.size()); for (Instruction& insn : *bb) { if (insn.opcode() == SpvOpPhi || !CreatesRegisterUsage(&insn) || seen_insn.count(insn.result_id())) { continue; } sim_result->AddRegisterClass(&insn); } } const RegionRegisterLiveness* l1_latch_live_inout_info = Get(l1.GetLatchBlock()->id()); assert(l1_latch_live_inout_info != nullptr && "Basic block not processed"); RegionRegisterLiveness::LiveSet l1_latch_live_out = l1_latch_live_inout_info->live_out_; l1_latch_live_out.insert(live_loop.begin(), live_loop.end()); auto live_loop_l2 = make_range(l1_latch_live_out.begin(), l1_latch_live_out.end()); for (uint32_t bb_id : l2.GetBlocks()) { BasicBlock* bb = context_->cfg()->block(bb_id); const RegionRegisterLiveness* live_inout_info = Get(bb_id); assert(live_inout_info != nullptr && "Basic block not processed"); RegionRegisterLiveness::LiveSet live_out = live_inout_info->live_out_; live_out.insert(live_loop_l2.begin(), live_loop_l2.end()); sim_result->used_registers_ = std::max(sim_result->used_registers_, live_inout_info->used_registers_ + live_out.size() - live_inout_info->live_out_.size()); for (Instruction& insn : *bb) { if (insn.opcode() == SpvOpPhi || !CreatesRegisterUsage(&insn) || seen_insn.count(insn.result_id())) { continue; } sim_result->AddRegisterClass(&insn); } } } void RegisterLiveness::SimulateFission( const Loop& loop, const std::unordered_set& moved_inst, const std::unordered_set& copied_inst, RegionRegisterLiveness* l1_sim_result, RegionRegisterLiveness* l2_sim_result) const { l1_sim_result->Clear(); l2_sim_result->Clear(); // Filter predicates: consider instructions that only belong to the first and // second loop. auto belong_to_loop1 = [&moved_inst, &copied_inst, &loop](Instruction* insn) { return moved_inst.count(insn) || copied_inst.count(insn) || !loop.IsInsideLoop(insn); }; auto belong_to_loop2 = [&moved_inst](Instruction* insn) { return !moved_inst.count(insn); }; const RegionRegisterLiveness* header_live_inout = Get(loop.GetHeaderBlock()); // l1 live-in { auto live_loop = MakeFilterIteratorRange( header_live_inout->live_in_.begin(), header_live_inout->live_in_.end(), belong_to_loop1); l1_sim_result->live_in_.insert(live_loop.begin(), live_loop.end()); } // l2 live-in { auto live_loop = MakeFilterIteratorRange( header_live_inout->live_in_.begin(), header_live_inout->live_in_.end(), belong_to_loop2); l2_sim_result->live_in_.insert(live_loop.begin(), live_loop.end()); } std::unordered_set exit_blocks; loop.GetExitBlocks(&exit_blocks); // l2 live-out. for (uint32_t bb_id : exit_blocks) { const RegionRegisterLiveness* live_inout = Get(bb_id); l2_sim_result->live_out_.insert(live_inout->live_in_.begin(), live_inout->live_in_.end()); } // l1 live-out. { auto live_out = MakeFilterIteratorRange(l2_sim_result->live_out_.begin(), l2_sim_result->live_out_.end(), belong_to_loop1); l1_sim_result->live_out_.insert(live_out.begin(), live_out.end()); } { auto live_out = MakeFilterIteratorRange(l2_sim_result->live_in_.begin(), l2_sim_result->live_in_.end(), belong_to_loop1); l1_sim_result->live_out_.insert(live_out.begin(), live_out.end()); } // Lives out of l1 are live out of l2 so are live in of l2 as well. l2_sim_result->live_in_.insert(l1_sim_result->live_out_.begin(), l1_sim_result->live_out_.end()); for (Instruction* insn : l1_sim_result->live_in_) { l1_sim_result->AddRegisterClass(insn); } for (Instruction* insn : l2_sim_result->live_in_) { l2_sim_result->AddRegisterClass(insn); } l1_sim_result->used_registers_ = 0; l2_sim_result->used_registers_ = 0; for (uint32_t bb_id : loop.GetBlocks()) { BasicBlock* bb = context_->cfg()->block(bb_id); const RegisterLiveness::RegionRegisterLiveness* live_inout = Get(bb_id); assert(live_inout != nullptr && "Basic block not processed"); auto l1_block_live_out = MakeFilterIteratorRange(live_inout->live_out_.begin(), live_inout->live_out_.end(), belong_to_loop1); auto l2_block_live_out = MakeFilterIteratorRange(live_inout->live_out_.begin(), live_inout->live_out_.end(), belong_to_loop2); size_t l1_reg_count = std::distance(l1_block_live_out.begin(), l1_block_live_out.end()); size_t l2_reg_count = std::distance(l2_block_live_out.begin(), l2_block_live_out.end()); std::unordered_set die_in_block; for (Instruction& insn : make_range(bb->rbegin(), bb->rend())) { if (insn.opcode() == SpvOpPhi) { break; } bool does_belong_to_loop1 = belong_to_loop1(&insn); bool does_belong_to_loop2 = belong_to_loop2(&insn); insn.ForEachInId([live_inout, &die_in_block, &l1_reg_count, &l2_reg_count, does_belong_to_loop1, does_belong_to_loop2, this](uint32_t* id) { Instruction* op_insn = context_->get_def_use_mgr()->GetDef(*id); if (!CreatesRegisterUsage(op_insn) || live_inout->live_out_.count(op_insn)) { // already taken into account. return; } if (!die_in_block.count(*id)) { if (does_belong_to_loop1) { l1_reg_count++; } if (does_belong_to_loop2) { l2_reg_count++; } die_in_block.insert(*id); } }); l1_sim_result->used_registers_ = std::max(l1_sim_result->used_registers_, l1_reg_count); l2_sim_result->used_registers_ = std::max(l2_sim_result->used_registers_, l2_reg_count); if (CreatesRegisterUsage(&insn)) { if (does_belong_to_loop1) { if (!l1_sim_result->live_in_.count(&insn)) { l1_sim_result->AddRegisterClass(&insn); } l1_reg_count--; } if (does_belong_to_loop2) { if (!l2_sim_result->live_in_.count(&insn)) { l2_sim_result->AddRegisterClass(&insn); } l2_reg_count--; } } } } } } // namespace opt } // namespace spvtools