// Copyright (c) 2018 Google LLC. // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights // reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "source/opcode.h" #include "source/spirv_target_env.h" #include "source/val/instruction.h" #include "source/val/validate.h" #include "source/val/validate_scopes.h" #include "source/val/validation_state.h" namespace spvtools { namespace val { namespace { bool AreLayoutCompatibleStructs(ValidationState_t&, const Instruction*, const Instruction*); bool HaveLayoutCompatibleMembers(ValidationState_t&, const Instruction*, const Instruction*); bool HaveSameLayoutDecorations(ValidationState_t&, const Instruction*, const Instruction*); bool HasConflictingMemberOffsets(const std::set&, const std::set&); bool IsAllowedTypeOrArrayOfSame(ValidationState_t& _, const Instruction* type, std::initializer_list allowed) { if (std::find(allowed.begin(), allowed.end(), type->opcode()) != allowed.end()) { return true; } if (type->opcode() == SpvOpTypeArray || type->opcode() == SpvOpTypeRuntimeArray) { auto elem_type = _.FindDef(type->word(2)); return std::find(allowed.begin(), allowed.end(), elem_type->opcode()) != allowed.end(); } return false; } // Returns true if the two instructions represent structs that, as far as the // validator can tell, have the exact same data layout. bool AreLayoutCompatibleStructs(ValidationState_t& _, const Instruction* type1, const Instruction* type2) { if (type1->opcode() != SpvOpTypeStruct) { return false; } if (type2->opcode() != SpvOpTypeStruct) { return false; } if (!HaveLayoutCompatibleMembers(_, type1, type2)) return false; return HaveSameLayoutDecorations(_, type1, type2); } // Returns true if the operands to the OpTypeStruct instruction defining the // types are the same or are layout compatible types. |type1| and |type2| must // be OpTypeStruct instructions. bool HaveLayoutCompatibleMembers(ValidationState_t& _, const Instruction* type1, const Instruction* type2) { assert(type1->opcode() == SpvOpTypeStruct && "type1 must be an OpTypeStruct instruction."); assert(type2->opcode() == SpvOpTypeStruct && "type2 must be an OpTypeStruct instruction."); const auto& type1_operands = type1->operands(); const auto& type2_operands = type2->operands(); if (type1_operands.size() != type2_operands.size()) { return false; } for (size_t operand = 2; operand < type1_operands.size(); ++operand) { if (type1->word(operand) != type2->word(operand)) { auto def1 = _.FindDef(type1->word(operand)); auto def2 = _.FindDef(type2->word(operand)); if (!AreLayoutCompatibleStructs(_, def1, def2)) { return false; } } } return true; } // Returns true if all decorations that affect the data layout of the struct // (like Offset), are the same for the two types. |type1| and |type2| must be // OpTypeStruct instructions. bool HaveSameLayoutDecorations(ValidationState_t& _, const Instruction* type1, const Instruction* type2) { assert(type1->opcode() == SpvOpTypeStruct && "type1 must be an OpTypeStruct instruction."); assert(type2->opcode() == SpvOpTypeStruct && "type2 must be an OpTypeStruct instruction."); const std::set& type1_decorations = _.id_decorations(type1->id()); const std::set& type2_decorations = _.id_decorations(type2->id()); // TODO: Will have to add other check for arrays an matricies if we want to // handle them. if (HasConflictingMemberOffsets(type1_decorations, type2_decorations)) { return false; } return true; } bool HasConflictingMemberOffsets( const std::set& type1_decorations, const std::set& type2_decorations) { { // We are interested in conflicting decoration. If a decoration is in one // list but not the other, then we will assume the code is correct. We are // looking for things we know to be wrong. // // We do not have to traverse type2_decoration because, after traversing // type1_decorations, anything new will not be found in // type1_decoration. Therefore, it cannot lead to a conflict. for (const Decoration& decoration : type1_decorations) { switch (decoration.dec_type()) { case SpvDecorationOffset: { // Since these affect the layout of the struct, they must be present // in both structs. auto compare = [&decoration](const Decoration& rhs) { if (rhs.dec_type() != SpvDecorationOffset) return false; return decoration.struct_member_index() == rhs.struct_member_index(); }; auto i = std::find_if(type2_decorations.begin(), type2_decorations.end(), compare); if (i != type2_decorations.end() && decoration.params().front() != i->params().front()) { return true; } } break; default: // This decoration does not affect the layout of the structure, so // just moving on. break; } } } return false; } // If |skip_builtin| is true, returns true if |storage| contains bool within // it and no storage that contains the bool is builtin. // If |skip_builtin| is false, returns true if |storage| contains bool within // it. bool ContainsInvalidBool(ValidationState_t& _, const Instruction* storage, bool skip_builtin) { if (skip_builtin) { for (const Decoration& decoration : _.id_decorations(storage->id())) { if (decoration.dec_type() == SpvDecorationBuiltIn) return false; } } const size_t elem_type_index = 1; uint32_t elem_type_id; Instruction* elem_type; switch (storage->opcode()) { case SpvOpTypeBool: return true; case SpvOpTypeVector: case SpvOpTypeMatrix: case SpvOpTypeArray: case SpvOpTypeRuntimeArray: elem_type_id = storage->GetOperandAs(elem_type_index); elem_type = _.FindDef(elem_type_id); return ContainsInvalidBool(_, elem_type, skip_builtin); case SpvOpTypeStruct: for (size_t member_type_index = 1; member_type_index < storage->operands().size(); ++member_type_index) { auto member_type_id = storage->GetOperandAs(member_type_index); auto member_type = _.FindDef(member_type_id); if (ContainsInvalidBool(_, member_type, skip_builtin)) return true; } default: break; } return false; } bool ContainsCooperativeMatrix(ValidationState_t& _, const Instruction* storage) { const size_t elem_type_index = 1; uint32_t elem_type_id; Instruction* elem_type; switch (storage->opcode()) { case SpvOpTypeCooperativeMatrixNV: return true; case SpvOpTypeArray: case SpvOpTypeRuntimeArray: elem_type_id = storage->GetOperandAs(elem_type_index); elem_type = _.FindDef(elem_type_id); return ContainsCooperativeMatrix(_, elem_type); case SpvOpTypeStruct: for (size_t member_type_index = 1; member_type_index < storage->operands().size(); ++member_type_index) { auto member_type_id = storage->GetOperandAs(member_type_index); auto member_type = _.FindDef(member_type_id); if (ContainsCooperativeMatrix(_, member_type)) return true; } break; default: break; } return false; } std::pair GetStorageClass( ValidationState_t& _, const Instruction* inst) { SpvStorageClass dst_sc = SpvStorageClassMax; SpvStorageClass src_sc = SpvStorageClassMax; switch (inst->opcode()) { case SpvOpCooperativeMatrixLoadNV: case SpvOpLoad: { auto load_pointer = _.FindDef(inst->GetOperandAs(2)); auto load_pointer_type = _.FindDef(load_pointer->type_id()); dst_sc = load_pointer_type->GetOperandAs(1); break; } case SpvOpCooperativeMatrixStoreNV: case SpvOpStore: { auto store_pointer = _.FindDef(inst->GetOperandAs(0)); auto store_pointer_type = _.FindDef(store_pointer->type_id()); dst_sc = store_pointer_type->GetOperandAs(1); break; } case SpvOpCopyMemory: case SpvOpCopyMemorySized: { auto dst = _.FindDef(inst->GetOperandAs(0)); auto dst_type = _.FindDef(dst->type_id()); dst_sc = dst_type->GetOperandAs(1); auto src = _.FindDef(inst->GetOperandAs(1)); auto src_type = _.FindDef(src->type_id()); src_sc = src_type->GetOperandAs(1); break; } default: break; } return std::make_pair(dst_sc, src_sc); } // Returns the number of instruction words taken up by a memory access // argument and its implied operands. int MemoryAccessNumWords(uint32_t mask) { int result = 1; // Count the mask if (mask & SpvMemoryAccessAlignedMask) ++result; if (mask & SpvMemoryAccessMakePointerAvailableKHRMask) ++result; if (mask & SpvMemoryAccessMakePointerVisibleKHRMask) ++result; return result; } // Returns the scope ID operand for MakeAvailable memory access with mask // at the given operand index. // This function is only called for OpLoad, OpStore, OpCopyMemory and // OpCopyMemorySized, OpCooperativeMatrixLoadNV, and // OpCooperativeMatrixStoreNV. uint32_t GetMakeAvailableScope(const Instruction* inst, uint32_t mask, uint32_t mask_index) { assert(mask & SpvMemoryAccessMakePointerAvailableKHRMask); uint32_t this_bit = uint32_t(SpvMemoryAccessMakePointerAvailableKHRMask); uint32_t index = mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1))); return inst->GetOperandAs(index); } // This function is only called for OpLoad, OpStore, OpCopyMemory, // OpCopyMemorySized, OpCooperativeMatrixLoadNV, and // OpCooperativeMatrixStoreNV. uint32_t GetMakeVisibleScope(const Instruction* inst, uint32_t mask, uint32_t mask_index) { assert(mask & SpvMemoryAccessMakePointerVisibleKHRMask); uint32_t this_bit = uint32_t(SpvMemoryAccessMakePointerVisibleKHRMask); uint32_t index = mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1))); return inst->GetOperandAs(index); } bool DoesStructContainRTA(const ValidationState_t& _, const Instruction* inst) { for (size_t member_index = 1; member_index < inst->operands().size(); ++member_index) { const auto member_id = inst->GetOperandAs(member_index); const auto member_type = _.FindDef(member_id); if (member_type->opcode() == SpvOpTypeRuntimeArray) return true; } return false; } spv_result_t CheckMemoryAccess(ValidationState_t& _, const Instruction* inst, uint32_t index) { SpvStorageClass dst_sc, src_sc; std::tie(dst_sc, src_sc) = GetStorageClass(_, inst); if (inst->operands().size() <= index) { // Cases where lack of some operand is invalid if (src_sc == SpvStorageClassPhysicalStorageBuffer || dst_sc == SpvStorageClassPhysicalStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4708) << "Memory accesses with PhysicalStorageBuffer must use Aligned."; } return SPV_SUCCESS; } const uint32_t mask = inst->GetOperandAs(index); if (mask & SpvMemoryAccessMakePointerAvailableKHRMask) { if (inst->opcode() == SpvOpLoad || inst->opcode() == SpvOpCooperativeMatrixLoadNV) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "MakePointerAvailableKHR cannot be used with OpLoad."; } if (!(mask & SpvMemoryAccessNonPrivatePointerKHRMask)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "NonPrivatePointerKHR must be specified if " "MakePointerAvailableKHR is specified."; } // Check the associated scope for MakeAvailableKHR. const auto available_scope = GetMakeAvailableScope(inst, mask, index); if (auto error = ValidateMemoryScope(_, inst, available_scope)) return error; } if (mask & SpvMemoryAccessMakePointerVisibleKHRMask) { if (inst->opcode() == SpvOpStore || inst->opcode() == SpvOpCooperativeMatrixStoreNV) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "MakePointerVisibleKHR cannot be used with OpStore."; } if (!(mask & SpvMemoryAccessNonPrivatePointerKHRMask)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "NonPrivatePointerKHR must be specified if " << "MakePointerVisibleKHR is specified."; } // Check the associated scope for MakeVisibleKHR. const auto visible_scope = GetMakeVisibleScope(inst, mask, index); if (auto error = ValidateMemoryScope(_, inst, visible_scope)) return error; } if (mask & SpvMemoryAccessNonPrivatePointerKHRMask) { if (dst_sc != SpvStorageClassUniform && dst_sc != SpvStorageClassWorkgroup && dst_sc != SpvStorageClassCrossWorkgroup && dst_sc != SpvStorageClassGeneric && dst_sc != SpvStorageClassImage && dst_sc != SpvStorageClassStorageBuffer && dst_sc != SpvStorageClassPhysicalStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "NonPrivatePointerKHR requires a pointer in Uniform, " << "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer " << "storage classes."; } if (src_sc != SpvStorageClassMax && src_sc != SpvStorageClassUniform && src_sc != SpvStorageClassWorkgroup && src_sc != SpvStorageClassCrossWorkgroup && src_sc != SpvStorageClassGeneric && src_sc != SpvStorageClassImage && src_sc != SpvStorageClassStorageBuffer && src_sc != SpvStorageClassPhysicalStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "NonPrivatePointerKHR requires a pointer in Uniform, " << "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer " << "storage classes."; } } if (!(mask & SpvMemoryAccessAlignedMask)) { if (src_sc == SpvStorageClassPhysicalStorageBuffer || dst_sc == SpvStorageClassPhysicalStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4708) << "Memory accesses with PhysicalStorageBuffer must use Aligned."; } } return SPV_SUCCESS; } spv_result_t ValidateVariable(ValidationState_t& _, const Instruction* inst) { auto result_type = _.FindDef(inst->type_id()); if (!result_type || result_type->opcode() != SpvOpTypePointer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpVariable Result Type '" << _.getIdName(inst->type_id()) << "' is not a pointer type."; } const auto type_index = 2; const auto value_id = result_type->GetOperandAs(type_index); auto value_type = _.FindDef(value_id); const auto initializer_index = 3; const auto storage_class_index = 2; if (initializer_index < inst->operands().size()) { const auto initializer_id = inst->GetOperandAs(initializer_index); const auto initializer = _.FindDef(initializer_id); const auto is_module_scope_var = initializer && (initializer->opcode() == SpvOpVariable) && (initializer->GetOperandAs(storage_class_index) != SpvStorageClassFunction); const auto is_constant = initializer && spvOpcodeIsConstant(initializer->opcode()); if (!initializer || !(is_constant || is_module_scope_var)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpVariable Initializer '" << _.getIdName(initializer_id) << "' is not a constant or module-scope variable."; } if (initializer->type_id() != value_id) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Initializer type must match the type pointed to by the Result " "Type"; } } auto storage_class = inst->GetOperandAs(storage_class_index); if (storage_class != SpvStorageClassWorkgroup && storage_class != SpvStorageClassCrossWorkgroup && storage_class != SpvStorageClassPrivate && storage_class != SpvStorageClassFunction && storage_class != SpvStorageClassRayPayloadKHR && storage_class != SpvStorageClassIncomingRayPayloadKHR && storage_class != SpvStorageClassHitAttributeKHR && storage_class != SpvStorageClassCallableDataKHR && storage_class != SpvStorageClassIncomingCallableDataKHR) { bool storage_input_or_output = storage_class == SpvStorageClassInput || storage_class == SpvStorageClassOutput; bool builtin = false; if (storage_input_or_output) { for (const Decoration& decoration : _.id_decorations(inst->id())) { if (decoration.dec_type() == SpvDecorationBuiltIn) { builtin = true; break; } } } if (!builtin && ContainsInvalidBool(_, value_type, storage_input_or_output)) { if (storage_input_or_output) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "If OpTypeBool is stored in conjunction with OpVariable " "using Input or Output Storage Classes it requires a BuiltIn " "decoration"; } else { return _.diag(SPV_ERROR_INVALID_ID, inst) << "If OpTypeBool is stored in conjunction with OpVariable, it " "can only be used with non-externally visible shader Storage " "Classes: Workgroup, CrossWorkgroup, Private, Function, " "Input, Output, RayPayloadKHR, IncomingRayPayloadKHR, " "HitAttributeKHR, CallableDataKHR, or " "IncomingCallableDataKHR"; } } } if (!_.IsValidStorageClass(storage_class)) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << _.VkErrorID(4643) << "Invalid storage class for target environment"; } if (storage_class == SpvStorageClassGeneric) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "OpVariable storage class cannot be Generic"; } if (inst->function() && storage_class != SpvStorageClassFunction) { return _.diag(SPV_ERROR_INVALID_LAYOUT, inst) << "Variables must have a function[7] storage class inside" " of a function"; } if (!inst->function() && storage_class == SpvStorageClassFunction) { return _.diag(SPV_ERROR_INVALID_LAYOUT, inst) << "Variables can not have a function[7] storage class " "outside of a function"; } // SPIR-V 3.32.8: Check that pointer type and variable type have the same // storage class. const auto result_storage_class_index = 1; const auto result_storage_class = result_type->GetOperandAs(result_storage_class_index); if (storage_class != result_storage_class) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "From SPIR-V spec, section 3.32.8 on OpVariable:\n" << "Its Storage Class operand must be the same as the Storage Class " << "operand of the result type."; } // Variable pointer related restrictions. const auto pointee = _.FindDef(result_type->word(3)); if (_.addressing_model() == SpvAddressingModelLogical && !_.options()->relax_logical_pointer) { // VariablePointersStorageBuffer is implied by VariablePointers. if (pointee->opcode() == SpvOpTypePointer) { if (!_.HasCapability(SpvCapabilityVariablePointersStorageBuffer)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "In Logical addressing, variables may not allocate a pointer " << "type"; } else if (storage_class != SpvStorageClassFunction && storage_class != SpvStorageClassPrivate) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "In Logical addressing with variable pointers, variables " << "that allocate pointers must be in Function or Private " << "storage classes"; } } } if (spvIsVulkanEnv(_.context()->target_env)) { // Vulkan Push Constant Interface section: Check type of PushConstant // variables. if (storage_class == SpvStorageClassPushConstant) { if (pointee->opcode() != SpvOpTypeStruct) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(6808) << "PushConstant OpVariable '" << _.getIdName(inst->id()) << "' has illegal type.\n" << "From Vulkan spec, Push Constant Interface section:\n" << "Such variables must be typed as OpTypeStruct"; } } // Vulkan Descriptor Set Interface: Check type of UniformConstant and // Uniform variables. if (storage_class == SpvStorageClassUniformConstant) { if (!IsAllowedTypeOrArrayOfSame( _, pointee, {SpvOpTypeImage, SpvOpTypeSampler, SpvOpTypeSampledImage, SpvOpTypeAccelerationStructureKHR})) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4655) << "UniformConstant OpVariable '" << _.getIdName(inst->id()) << "' has illegal type.\n" << "Variables identified with the UniformConstant storage class " << "are used only as handles to refer to opaque resources. Such " << "variables must be typed as OpTypeImage, OpTypeSampler, " << "OpTypeSampledImage, OpTypeAccelerationStructureKHR, " << "or an array of one of these types."; } } if (storage_class == SpvStorageClassUniform) { if (!IsAllowedTypeOrArrayOfSame(_, pointee, {SpvOpTypeStruct})) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(6807) << "Uniform OpVariable '" << _.getIdName(inst->id()) << "' has illegal type.\n" << "From Vulkan spec:\n" << "Variables identified with the Uniform storage class are " << "used to access transparent buffer backed resources. Such " << "variables must be typed as OpTypeStruct, or an array of " << "this type"; } } if (storage_class == SpvStorageClassStorageBuffer) { if (!IsAllowedTypeOrArrayOfSame(_, pointee, {SpvOpTypeStruct})) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(6807) << "StorageBuffer OpVariable '" << _.getIdName(inst->id()) << "' has illegal type.\n" << "From Vulkan spec:\n" << "Variables identified with the StorageBuffer storage class " "are used to access transparent buffer backed resources. " "Such variables must be typed as OpTypeStruct, or an array " "of this type"; } } // Check for invalid use of Invariant if (storage_class != SpvStorageClassInput && storage_class != SpvStorageClassOutput) { if (_.HasDecoration(inst->id(), SpvDecorationInvariant)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4677) << "Variable decorated with Invariant must only be identified " "with the Input or Output storage class in Vulkan " "environment."; } // Need to check if only the members in a struct are decorated if (value_type && value_type->opcode() == SpvOpTypeStruct) { if (_.HasDecoration(value_id, SpvDecorationInvariant)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4677) << "Variable struct member decorated with Invariant must only " "be identified with the Input or Output storage class in " "Vulkan environment."; } } } // Initializers in Vulkan are only allowed in some storage clases if (inst->operands().size() > 3) { if (storage_class == SpvStorageClassWorkgroup) { auto init_id = inst->GetOperandAs(3); auto init = _.FindDef(init_id); if (init->opcode() != SpvOpConstantNull) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4734) << "OpVariable, '" << _.getIdName(inst->id()) << "', initializers are limited to OpConstantNull in " "Workgroup " "storage class"; } } else if (storage_class != SpvStorageClassOutput && storage_class != SpvStorageClassPrivate && storage_class != SpvStorageClassFunction) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4651) << "OpVariable, '" << _.getIdName(inst->id()) << "', has a disallowed initializer & storage class " << "combination.\n" << "From " << spvLogStringForEnv(_.context()->target_env) << " spec:\n" << "Variable declarations that include initializers must have " << "one of the following storage classes: Output, Private, " << "Function or Workgroup"; } } } if (storage_class == SpvStorageClassPhysicalStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "PhysicalStorageBuffer must not be used with OpVariable."; } auto pointee_base = pointee; while (pointee_base->opcode() == SpvOpTypeArray) { pointee_base = _.FindDef(pointee_base->GetOperandAs(1u)); } if (pointee_base->opcode() == SpvOpTypePointer) { if (pointee_base->GetOperandAs(1u) == SpvStorageClassPhysicalStorageBuffer) { // check for AliasedPointer/RestrictPointer bool foundAliased = _.HasDecoration(inst->id(), SpvDecorationAliasedPointer); bool foundRestrict = _.HasDecoration(inst->id(), SpvDecorationRestrictPointer); if (!foundAliased && !foundRestrict) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpVariable " << inst->id() << ": expected AliasedPointer or RestrictPointer for " << "PhysicalStorageBuffer pointer."; } if (foundAliased && foundRestrict) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpVariable " << inst->id() << ": can't specify both AliasedPointer and " << "RestrictPointer for PhysicalStorageBuffer pointer."; } } } // Vulkan specific validation rules for OpTypeRuntimeArray if (spvIsVulkanEnv(_.context()->target_env)) { // OpTypeRuntimeArray should only ever be in a container like OpTypeStruct, // so should never appear as a bare variable. // Unless the module has the RuntimeDescriptorArrayEXT capability. if (value_type && value_type->opcode() == SpvOpTypeRuntimeArray) { if (!_.HasCapability(SpvCapabilityRuntimeDescriptorArrayEXT)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4680) << "OpVariable, '" << _.getIdName(inst->id()) << "', is attempting to create memory for an illegal type, " << "OpTypeRuntimeArray.\nFor Vulkan OpTypeRuntimeArray can only " << "appear as the final member of an OpTypeStruct, thus cannot " << "be instantiated via OpVariable"; } else { // A bare variable OpTypeRuntimeArray is allowed in this context, but // still need to check the storage class. if (storage_class != SpvStorageClassStorageBuffer && storage_class != SpvStorageClassUniform && storage_class != SpvStorageClassUniformConstant) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4680) << "For Vulkan with RuntimeDescriptorArrayEXT, a variable " << "containing OpTypeRuntimeArray must have storage class of " << "StorageBuffer, Uniform, or UniformConstant."; } } } // If an OpStruct has an OpTypeRuntimeArray somewhere within it, then it // must either have the storage class StorageBuffer and be decorated // with Block, or it must be in the Uniform storage class and be decorated // as BufferBlock. if (value_type && value_type->opcode() == SpvOpTypeStruct) { if (DoesStructContainRTA(_, value_type)) { if (storage_class == SpvStorageClassStorageBuffer || storage_class == SpvStorageClassPhysicalStorageBuffer) { if (!_.HasDecoration(value_id, SpvDecorationBlock)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4680) << "For Vulkan, an OpTypeStruct variable containing an " << "OpTypeRuntimeArray must be decorated with Block if it " << "has storage class StorageBuffer or " "PhysicalStorageBuffer."; } } else if (storage_class == SpvStorageClassUniform) { if (!_.HasDecoration(value_id, SpvDecorationBufferBlock)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4680) << "For Vulkan, an OpTypeStruct variable containing an " << "OpTypeRuntimeArray must be decorated with BufferBlock " << "if it has storage class Uniform."; } } else { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(4680) << "For Vulkan, OpTypeStruct variables containing " << "OpTypeRuntimeArray must have storage class of " << "StorageBuffer, PhysicalStorageBuffer, or Uniform."; } } } } // Cooperative matrix types can only be allocated in Function or Private if ((storage_class != SpvStorageClassFunction && storage_class != SpvStorageClassPrivate) && ContainsCooperativeMatrix(_, pointee)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Cooperative matrix types (or types containing them) can only be " "allocated " << "in Function or Private storage classes or as function " "parameters"; } if (_.HasCapability(SpvCapabilityShader)) { // Don't allow variables containing 16-bit elements without the appropriate // capabilities. if ((!_.HasCapability(SpvCapabilityInt16) && _.ContainsSizedIntOrFloatType(value_id, SpvOpTypeInt, 16)) || (!_.HasCapability(SpvCapabilityFloat16) && _.ContainsSizedIntOrFloatType(value_id, SpvOpTypeFloat, 16))) { auto underlying_type = value_type; while (underlying_type->opcode() == SpvOpTypePointer) { storage_class = underlying_type->GetOperandAs(1u); underlying_type = _.FindDef(underlying_type->GetOperandAs(2u)); } bool storage_class_ok = true; std::string sc_name = _.grammar().lookupOperandName( SPV_OPERAND_TYPE_STORAGE_CLASS, storage_class); switch (storage_class) { case SpvStorageClassStorageBuffer: case SpvStorageClassPhysicalStorageBuffer: if (!_.HasCapability(SpvCapabilityStorageBuffer16BitAccess)) { storage_class_ok = false; } break; case SpvStorageClassUniform: if (!_.HasCapability( SpvCapabilityUniformAndStorageBuffer16BitAccess)) { if (underlying_type->opcode() == SpvOpTypeArray || underlying_type->opcode() == SpvOpTypeRuntimeArray) { underlying_type = _.FindDef(underlying_type->GetOperandAs(1u)); } if (!_.HasCapability(SpvCapabilityStorageBuffer16BitAccess) || !_.HasDecoration(underlying_type->id(), SpvDecorationBufferBlock)) { storage_class_ok = false; } } break; case SpvStorageClassPushConstant: if (!_.HasCapability(SpvCapabilityStoragePushConstant16)) { storage_class_ok = false; } break; case SpvStorageClassInput: case SpvStorageClassOutput: if (!_.HasCapability(SpvCapabilityStorageInputOutput16)) { storage_class_ok = false; } break; case SpvStorageClassWorkgroup: if (!_.HasCapability(SpvCapabilityWorkgroupMemoryExplicitLayout16BitAccessKHR)) { storage_class_ok = false; } break; default: return _.diag(SPV_ERROR_INVALID_ID, inst) << "Cannot allocate a variable containing a 16-bit type in " << sc_name << " storage class"; } if (!storage_class_ok) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Allocating a variable containing a 16-bit element in " << sc_name << " storage class requires an additional capability"; } } // Don't allow variables containing 8-bit elements without the appropriate // capabilities. if (!_.HasCapability(SpvCapabilityInt8) && _.ContainsSizedIntOrFloatType(value_id, SpvOpTypeInt, 8)) { auto underlying_type = value_type; while (underlying_type->opcode() == SpvOpTypePointer) { storage_class = underlying_type->GetOperandAs(1u); underlying_type = _.FindDef(underlying_type->GetOperandAs(2u)); } bool storage_class_ok = true; std::string sc_name = _.grammar().lookupOperandName( SPV_OPERAND_TYPE_STORAGE_CLASS, storage_class); switch (storage_class) { case SpvStorageClassStorageBuffer: case SpvStorageClassPhysicalStorageBuffer: if (!_.HasCapability(SpvCapabilityStorageBuffer8BitAccess)) { storage_class_ok = false; } break; case SpvStorageClassUniform: if (!_.HasCapability( SpvCapabilityUniformAndStorageBuffer8BitAccess)) { if (underlying_type->opcode() == SpvOpTypeArray || underlying_type->opcode() == SpvOpTypeRuntimeArray) { underlying_type = _.FindDef(underlying_type->GetOperandAs(1u)); } if (!_.HasCapability(SpvCapabilityStorageBuffer8BitAccess) || !_.HasDecoration(underlying_type->id(), SpvDecorationBufferBlock)) { storage_class_ok = false; } } break; case SpvStorageClassPushConstant: if (!_.HasCapability(SpvCapabilityStoragePushConstant8)) { storage_class_ok = false; } break; case SpvStorageClassWorkgroup: if (!_.HasCapability(SpvCapabilityWorkgroupMemoryExplicitLayout8BitAccessKHR)) { storage_class_ok = false; } break; default: return _.diag(SPV_ERROR_INVALID_ID, inst) << "Cannot allocate a variable containing a 8-bit type in " << sc_name << " storage class"; } if (!storage_class_ok) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Allocating a variable containing a 8-bit element in " << sc_name << " storage class requires an additional capability"; } } } return SPV_SUCCESS; } spv_result_t ValidateLoad(ValidationState_t& _, const Instruction* inst) { const auto result_type = _.FindDef(inst->type_id()); if (!result_type) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpLoad Result Type '" << _.getIdName(inst->type_id()) << "' is not defined."; } const auto pointer_index = 2; const auto pointer_id = inst->GetOperandAs(pointer_index); const auto pointer = _.FindDef(pointer_id); if (!pointer || ((_.addressing_model() == SpvAddressingModelLogical) && ((!_.features().variable_pointers && !spvOpcodeReturnsLogicalPointer(pointer->opcode())) || (_.features().variable_pointers && !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpLoad Pointer '" << _.getIdName(pointer_id) << "' is not a logical pointer."; } const auto pointer_type = _.FindDef(pointer->type_id()); if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpLoad type for pointer '" << _.getIdName(pointer_id) << "' is not a pointer type."; } uint32_t pointee_data_type; uint32_t storage_class; if (!_.GetPointerTypeInfo(pointer_type->id(), &pointee_data_type, &storage_class) || result_type->id() != pointee_data_type) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpLoad Result Type '" << _.getIdName(inst->type_id()) << "' does not match Pointer '" << _.getIdName(pointer->id()) << "'s type."; } if (!_.options()->before_hlsl_legalization && _.ContainsRuntimeArray(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Cannot load a runtime-sized array"; } if (auto error = CheckMemoryAccess(_, inst, 3)) return error; if (_.HasCapability(SpvCapabilityShader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id()) && result_type->opcode() != SpvOpTypePointer) { if (result_type->opcode() != SpvOpTypeInt && result_type->opcode() != SpvOpTypeFloat && result_type->opcode() != SpvOpTypeVector && result_type->opcode() != SpvOpTypeMatrix) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "8- or 16-bit loads must be a scalar, vector or matrix type"; } } return SPV_SUCCESS; } spv_result_t ValidateStore(ValidationState_t& _, const Instruction* inst) { const auto pointer_index = 0; const auto pointer_id = inst->GetOperandAs(pointer_index); const auto pointer = _.FindDef(pointer_id); if (!pointer || (_.addressing_model() == SpvAddressingModelLogical && ((!_.features().variable_pointers && !spvOpcodeReturnsLogicalPointer(pointer->opcode())) || (_.features().variable_pointers && !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Pointer '" << _.getIdName(pointer_id) << "' is not a logical pointer."; } const auto pointer_type = _.FindDef(pointer->type_id()); if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore type for pointer '" << _.getIdName(pointer_id) << "' is not a pointer type."; } const auto type_id = pointer_type->GetOperandAs(2); const auto type = _.FindDef(type_id); if (!type || SpvOpTypeVoid == type->opcode()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Pointer '" << _.getIdName(pointer_id) << "'s type is void."; } // validate storage class { uint32_t data_type; uint32_t storage_class; if (!_.GetPointerTypeInfo(pointer_type->id(), &data_type, &storage_class)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Pointer '" << _.getIdName(pointer_id) << "' is not pointer type"; } if (storage_class == SpvStorageClassUniformConstant || storage_class == SpvStorageClassInput || storage_class == SpvStorageClassPushConstant) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Pointer '" << _.getIdName(pointer_id) << "' storage class is read-only"; } else if (storage_class == SpvStorageClassShaderRecordBufferKHR) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "ShaderRecordBufferKHR Storage Class variables are read only"; } else if (storage_class == SpvStorageClassHitAttributeKHR) { std::string errorVUID = _.VkErrorID(4703); _.function(inst->function()->id()) ->RegisterExecutionModelLimitation( [errorVUID](SpvExecutionModel model, std::string* message) { if (model == SpvExecutionModelAnyHitKHR || model == SpvExecutionModelClosestHitKHR) { if (message) { *message = errorVUID + "HitAttributeKHR Storage Class variables are read only " "with AnyHitKHR and ClosestHitKHR"; } return false; } return true; }); } if (spvIsVulkanEnv(_.context()->target_env) && storage_class == SpvStorageClassUniform) { auto base_ptr = _.TracePointer(pointer); if (base_ptr->opcode() == SpvOpVariable) { // If it's not a variable a different check should catch the problem. auto base_type = _.FindDef(base_ptr->GetOperandAs(0)); // Get the pointed-to type. base_type = _.FindDef(base_type->GetOperandAs(2u)); if (base_type->opcode() == SpvOpTypeArray || base_type->opcode() == SpvOpTypeRuntimeArray) { base_type = _.FindDef(base_type->GetOperandAs(1u)); } if (_.HasDecoration(base_type->id(), SpvDecorationBlock)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << _.VkErrorID(6925) << "In the Vulkan environment, cannot store to Uniform Blocks"; } } } } const auto object_index = 1; const auto object_id = inst->GetOperandAs(object_index); const auto object = _.FindDef(object_id); if (!object || !object->type_id()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Object '" << _.getIdName(object_id) << "' is not an object."; } const auto object_type = _.FindDef(object->type_id()); if (!object_type || SpvOpTypeVoid == object_type->opcode()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Object '" << _.getIdName(object_id) << "'s type is void."; } if (type->id() != object_type->id()) { if (!_.options()->relax_struct_store || type->opcode() != SpvOpTypeStruct || object_type->opcode() != SpvOpTypeStruct) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Pointer '" << _.getIdName(pointer_id) << "'s type does not match Object '" << _.getIdName(object->id()) << "'s type."; } // TODO: Check for layout compatible matricies and arrays as well. if (!AreLayoutCompatibleStructs(_, type, object_type)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpStore Pointer '" << _.getIdName(pointer_id) << "'s layout does not match Object '" << _.getIdName(object->id()) << "'s layout."; } } if (auto error = CheckMemoryAccess(_, inst, 2)) return error; if (_.HasCapability(SpvCapabilityShader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id()) && object_type->opcode() != SpvOpTypePointer) { if (object_type->opcode() != SpvOpTypeInt && object_type->opcode() != SpvOpTypeFloat && object_type->opcode() != SpvOpTypeVector && object_type->opcode() != SpvOpTypeMatrix) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "8- or 16-bit stores must be a scalar, vector or matrix type"; } } return SPV_SUCCESS; } spv_result_t ValidateCopyMemoryMemoryAccess(ValidationState_t& _, const Instruction* inst) { assert(inst->opcode() == SpvOpCopyMemory || inst->opcode() == SpvOpCopyMemorySized); const uint32_t first_access_index = inst->opcode() == SpvOpCopyMemory ? 2 : 3; if (inst->operands().size() > first_access_index) { if (auto error = CheckMemoryAccess(_, inst, first_access_index)) return error; const auto first_access = inst->GetOperandAs(first_access_index); const uint32_t second_access_index = first_access_index + MemoryAccessNumWords(first_access); if (inst->operands().size() > second_access_index) { if (_.features().copy_memory_permits_two_memory_accesses) { if (auto error = CheckMemoryAccess(_, inst, second_access_index)) return error; // In the two-access form in SPIR-V 1.4 and later: // - the first is the target (write) access and it can't have // make-visible. // - the second is the source (read) access and it can't have // make-available. if (first_access & SpvMemoryAccessMakePointerVisibleKHRMask) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Target memory access must not include " "MakePointerVisibleKHR"; } const auto second_access = inst->GetOperandAs(second_access_index); if (second_access & SpvMemoryAccessMakePointerAvailableKHRMask) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Source memory access must not include " "MakePointerAvailableKHR"; } } else { return _.diag(SPV_ERROR_INVALID_DATA, inst) << spvOpcodeString(static_cast(inst->opcode())) << " with two memory access operands requires SPIR-V 1.4 or " "later"; } } } return SPV_SUCCESS; } spv_result_t ValidateCopyMemory(ValidationState_t& _, const Instruction* inst) { const auto target_index = 0; const auto target_id = inst->GetOperandAs(target_index); const auto target = _.FindDef(target_id); if (!target) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Target operand '" << _.getIdName(target_id) << "' is not defined."; } const auto source_index = 1; const auto source_id = inst->GetOperandAs(source_index); const auto source = _.FindDef(source_id); if (!source) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Source operand '" << _.getIdName(source_id) << "' is not defined."; } const auto target_pointer_type = _.FindDef(target->type_id()); if (!target_pointer_type || target_pointer_type->opcode() != SpvOpTypePointer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Target operand '" << _.getIdName(target_id) << "' is not a pointer."; } const auto source_pointer_type = _.FindDef(source->type_id()); if (!source_pointer_type || source_pointer_type->opcode() != SpvOpTypePointer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Source operand '" << _.getIdName(source_id) << "' is not a pointer."; } if (inst->opcode() == SpvOpCopyMemory) { const auto target_type = _.FindDef(target_pointer_type->GetOperandAs(2)); if (!target_type || target_type->opcode() == SpvOpTypeVoid) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Target operand '" << _.getIdName(target_id) << "' cannot be a void pointer."; } const auto source_type = _.FindDef(source_pointer_type->GetOperandAs(2)); if (!source_type || source_type->opcode() == SpvOpTypeVoid) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Source operand '" << _.getIdName(source_id) << "' cannot be a void pointer."; } if (target_type->id() != source_type->id()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Target '" << _.getIdName(source_id) << "'s type does not match Source '" << _.getIdName(source_type->id()) << "'s type."; } } else { const auto size_id = inst->GetOperandAs(2); const auto size = _.FindDef(size_id); if (!size) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Size operand '" << _.getIdName(size_id) << "' is not defined."; } const auto size_type = _.FindDef(size->type_id()); if (!_.IsIntScalarType(size_type->id())) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Size operand '" << _.getIdName(size_id) << "' must be a scalar integer type."; } bool is_zero = true; switch (size->opcode()) { case SpvOpConstantNull: return _.diag(SPV_ERROR_INVALID_ID, inst) << "Size operand '" << _.getIdName(size_id) << "' cannot be a constant zero."; case SpvOpConstant: if (size_type->word(3) == 1 && size->word(size->words().size() - 1) & 0x80000000) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Size operand '" << _.getIdName(size_id) << "' cannot have the sign bit set to 1."; } for (size_t i = 3; is_zero && i < size->words().size(); ++i) { is_zero &= (size->word(i) == 0); } if (is_zero) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Size operand '" << _.getIdName(size_id) << "' cannot be a constant zero."; } break; default: // Cannot infer any other opcodes. break; } } if (auto error = ValidateCopyMemoryMemoryAccess(_, inst)) return error; // Get past the pointers to avoid checking a pointer copy. auto sub_type = _.FindDef(target_pointer_type->GetOperandAs(2)); while (sub_type->opcode() == SpvOpTypePointer) { sub_type = _.FindDef(sub_type->GetOperandAs(2)); } if (_.HasCapability(SpvCapabilityShader) && _.ContainsLimitedUseIntOrFloatType(sub_type->id())) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Cannot copy memory of objects containing 8- or 16-bit types"; } return SPV_SUCCESS; } spv_result_t ValidateAccessChain(ValidationState_t& _, const Instruction* inst) { std::string instr_name = "Op" + std::string(spvOpcodeString(static_cast(inst->opcode()))); // The result type must be OpTypePointer. auto result_type = _.FindDef(inst->type_id()); if (SpvOpTypePointer != result_type->opcode()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The Result Type of " << instr_name << " '" << _.getIdName(inst->id()) << "' must be OpTypePointer. Found Op" << spvOpcodeString(static_cast(result_type->opcode())) << "."; } // Result type is a pointer. Find out what it's pointing to. // This will be used to make sure the indexing results in the same type. // OpTypePointer word 3 is the type being pointed to. const auto result_type_pointee = _.FindDef(result_type->word(3)); // Base must be a pointer, pointing to the base of a composite object. const auto base_index = 2; const auto base_id = inst->GetOperandAs(base_index); const auto base = _.FindDef(base_id); const auto base_type = _.FindDef(base->type_id()); if (!base_type || SpvOpTypePointer != base_type->opcode()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The Base '" << _.getIdName(base_id) << "' in " << instr_name << " instruction must be a pointer."; } // The result pointer storage class and base pointer storage class must match. // Word 2 of OpTypePointer is the Storage Class. auto result_type_storage_class = result_type->word(2); auto base_type_storage_class = base_type->word(2); if (result_type_storage_class != base_type_storage_class) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The result pointer storage class and base " "pointer storage class in " << instr_name << " do not match."; } // The type pointed to by OpTypePointer (word 3) must be a composite type. auto type_pointee = _.FindDef(base_type->word(3)); // Check Universal Limit (SPIR-V Spec. Section 2.17). // The number of indexes passed to OpAccessChain may not exceed 255 // The instruction includes 4 words + N words (for N indexes) size_t num_indexes = inst->words().size() - 4; if (inst->opcode() == SpvOpPtrAccessChain || inst->opcode() == SpvOpInBoundsPtrAccessChain) { // In pointer access chains, the element operand is required, but not // counted as an index. --num_indexes; } const size_t num_indexes_limit = _.options()->universal_limits_.max_access_chain_indexes; if (num_indexes > num_indexes_limit) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The number of indexes in " << instr_name << " may not exceed " << num_indexes_limit << ". Found " << num_indexes << " indexes."; } // Indexes walk the type hierarchy to the desired depth, potentially down to // scalar granularity. The first index in Indexes will select the top-level // member/element/component/element of the base composite. All composite // constituents use zero-based numbering, as described by their OpType... // instruction. The second index will apply similarly to that result, and so // on. Once any non-composite type is reached, there must be no remaining // (unused) indexes. auto starting_index = 4; if (inst->opcode() == SpvOpPtrAccessChain || inst->opcode() == SpvOpInBoundsPtrAccessChain) { ++starting_index; } for (size_t i = starting_index; i < inst->words().size(); ++i) { const uint32_t cur_word = inst->words()[i]; // Earlier ID checks ensure that cur_word definition exists. auto cur_word_instr = _.FindDef(cur_word); // The index must be a scalar integer type (See OpAccessChain in the Spec.) auto index_type = _.FindDef(cur_word_instr->type_id()); if (!index_type || SpvOpTypeInt != index_type->opcode()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Indexes passed to " << instr_name << " must be of type integer."; } switch (type_pointee->opcode()) { case SpvOpTypeMatrix: case SpvOpTypeVector: case SpvOpTypeCooperativeMatrixNV: case SpvOpTypeArray: case SpvOpTypeRuntimeArray: { // In OpTypeMatrix, OpTypeVector, SpvOpTypeCooperativeMatrixNV, // OpTypeArray, and OpTypeRuntimeArray, word 2 is the Element Type. type_pointee = _.FindDef(type_pointee->word(2)); break; } case SpvOpTypeStruct: { // In case of structures, there is an additional constraint on the // index: the index must be an OpConstant. if (SpvOpConstant != cur_word_instr->opcode()) { return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr) << "The passed to " << instr_name << " to index into a " "structure must be an OpConstant."; } // Get the index value from the OpConstant (word 3 of OpConstant). // OpConstant could be a signed integer. But it's okay to treat it as // unsigned because a negative constant int would never be seen as // correct as a struct offset, since structs can't have more than 2 // billion members. const uint32_t cur_index = cur_word_instr->word(3); // The index points to the struct member we want, therefore, the index // should be less than the number of struct members. const uint32_t num_struct_members = static_cast(type_pointee->words().size() - 2); if (cur_index >= num_struct_members) { return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr) << "Index is out of bounds: " << instr_name << " can not find index " << cur_index << " into the structure '" << _.getIdName(type_pointee->id()) << "'. This structure has " << num_struct_members << " members. Largest valid index is " << num_struct_members - 1 << "."; } // Struct members IDs start at word 2 of OpTypeStruct. auto structMemberId = type_pointee->word(cur_index + 2); type_pointee = _.FindDef(structMemberId); break; } default: { // Give an error. reached non-composite type while indexes still remain. return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr) << instr_name << " reached non-composite type while indexes " "still remain to be traversed."; } } } // At this point, we have fully walked down from the base using the indeces. // The type being pointed to should be the same as the result type. if (type_pointee->id() != result_type_pointee->id()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << instr_name << " result type (Op" << spvOpcodeString(static_cast(result_type_pointee->opcode())) << ") does not match the type that results from indexing into the " "base " " (Op" << spvOpcodeString(static_cast(type_pointee->opcode())) << ")."; } return SPV_SUCCESS; } spv_result_t ValidatePtrAccessChain(ValidationState_t& _, const Instruction* inst) { if (_.addressing_model() == SpvAddressingModelLogical) { if (!_.features().variable_pointers) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Generating variable pointers requires capability " << "VariablePointers or VariablePointersStorageBuffer"; } } return ValidateAccessChain(_, inst); } spv_result_t ValidateArrayLength(ValidationState_t& state, const Instruction* inst) { std::string instr_name = "Op" + std::string(spvOpcodeString(static_cast(inst->opcode()))); // Result type must be a 32-bit unsigned int. auto result_type = state.FindDef(inst->type_id()); if (result_type->opcode() != SpvOpTypeInt || result_type->GetOperandAs(1) != 32 || result_type->GetOperandAs(2) != 0) { return state.diag(SPV_ERROR_INVALID_ID, inst) << "The Result Type of " << instr_name << " '" << state.getIdName(inst->id()) << "' must be OpTypeInt with width 32 and signedness 0."; } // The structure that is passed in must be an pointer to a structure, whose // last element is a runtime array. auto pointer = state.FindDef(inst->GetOperandAs(2)); auto pointer_type = state.FindDef(pointer->type_id()); if (pointer_type->opcode() != SpvOpTypePointer) { return state.diag(SPV_ERROR_INVALID_ID, inst) << "The Struture's type in " << instr_name << " '" << state.getIdName(inst->id()) << "' must be a pointer to an OpTypeStruct."; } auto structure_type = state.FindDef(pointer_type->GetOperandAs(2)); if (structure_type->opcode() != SpvOpTypeStruct) { return state.diag(SPV_ERROR_INVALID_ID, inst) << "The Struture's type in " << instr_name << " '" << state.getIdName(inst->id()) << "' must be a pointer to an OpTypeStruct."; } auto num_of_members = structure_type->operands().size() - 1; auto last_member = state.FindDef(structure_type->GetOperandAs(num_of_members)); if (last_member->opcode() != SpvOpTypeRuntimeArray) { return state.diag(SPV_ERROR_INVALID_ID, inst) << "The Struture's last member in " << instr_name << " '" << state.getIdName(inst->id()) << "' must be an OpTypeRuntimeArray."; } // The array member must the index of the last element (the run time // array). if (inst->GetOperandAs(3) != num_of_members - 1) { return state.diag(SPV_ERROR_INVALID_ID, inst) << "The array member in " << instr_name << " '" << state.getIdName(inst->id()) << "' must be an the last member of the struct."; } return SPV_SUCCESS; } spv_result_t ValidateCooperativeMatrixLengthNV(ValidationState_t& state, const Instruction* inst) { std::string instr_name = "Op" + std::string(spvOpcodeString(static_cast(inst->opcode()))); // Result type must be a 32-bit unsigned int. auto result_type = state.FindDef(inst->type_id()); if (result_type->opcode() != SpvOpTypeInt || result_type->GetOperandAs(1) != 32 || result_type->GetOperandAs(2) != 0) { return state.diag(SPV_ERROR_INVALID_ID, inst) << "The Result Type of " << instr_name << " '" << state.getIdName(inst->id()) << "' must be OpTypeInt with width 32 and signedness 0."; } auto type_id = inst->GetOperandAs(2); auto type = state.FindDef(type_id); if (type->opcode() != SpvOpTypeCooperativeMatrixNV) { return state.diag(SPV_ERROR_INVALID_ID, inst) << "The type in " << instr_name << " '" << state.getIdName(type_id) << "' must be OpTypeCooperativeMatrixNV."; } return SPV_SUCCESS; } spv_result_t ValidateCooperativeMatrixLoadStoreNV(ValidationState_t& _, const Instruction* inst) { uint32_t type_id; const char* opname; if (inst->opcode() == SpvOpCooperativeMatrixLoadNV) { type_id = inst->type_id(); opname = "SpvOpCooperativeMatrixLoadNV"; } else { // get Object operand's type type_id = _.FindDef(inst->GetOperandAs(1))->type_id(); opname = "SpvOpCooperativeMatrixStoreNV"; } auto matrix_type = _.FindDef(type_id); if (matrix_type->opcode() != SpvOpTypeCooperativeMatrixNV) { if (inst->opcode() == SpvOpCooperativeMatrixLoadNV) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "SpvOpCooperativeMatrixLoadNV Result Type '" << _.getIdName(type_id) << "' is not a cooperative matrix type."; } else { return _.diag(SPV_ERROR_INVALID_ID, inst) << "SpvOpCooperativeMatrixStoreNV Object type '" << _.getIdName(type_id) << "' is not a cooperative matrix type."; } } const auto pointer_index = (inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 2u : 0u; const auto pointer_id = inst->GetOperandAs(pointer_index); const auto pointer = _.FindDef(pointer_id); if (!pointer || ((_.addressing_model() == SpvAddressingModelLogical) && ((!_.features().variable_pointers && !spvOpcodeReturnsLogicalPointer(pointer->opcode())) || (_.features().variable_pointers && !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) { return _.diag(SPV_ERROR_INVALID_ID, inst) << opname << " Pointer '" << _.getIdName(pointer_id) << "' is not a logical pointer."; } const auto pointer_type_id = pointer->type_id(); const auto pointer_type = _.FindDef(pointer_type_id); if (!pointer_type || pointer_type->opcode() != SpvOpTypePointer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << opname << " type for pointer '" << _.getIdName(pointer_id) << "' is not a pointer type."; } const auto storage_class_index = 1u; const auto storage_class = pointer_type->GetOperandAs(storage_class_index); if (storage_class != SpvStorageClassWorkgroup && storage_class != SpvStorageClassStorageBuffer && storage_class != SpvStorageClassPhysicalStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << opname << " storage class for pointer type '" << _.getIdName(pointer_type_id) << "' is not Workgroup or StorageBuffer."; } const auto pointee_id = pointer_type->GetOperandAs(2); const auto pointee_type = _.FindDef(pointee_id); if (!pointee_type || !(_.IsIntScalarOrVectorType(pointee_id) || _.IsFloatScalarOrVectorType(pointee_id))) { return _.diag(SPV_ERROR_INVALID_ID, inst) << opname << " Pointer '" << _.getIdName(pointer->id()) << "'s Type must be a scalar or vector type."; } const auto stride_index = (inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 3u : 2u; const auto stride_id = inst->GetOperandAs(stride_index); const auto stride = _.FindDef(stride_id); if (!stride || !_.IsIntScalarType(stride->type_id())) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Stride operand '" << _.getIdName(stride_id) << "' must be a scalar integer type."; } const auto colmajor_index = (inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 4u : 3u; const auto colmajor_id = inst->GetOperandAs(colmajor_index); const auto colmajor = _.FindDef(colmajor_id); if (!colmajor || !_.IsBoolScalarType(colmajor->type_id()) || !(spvOpcodeIsConstant(colmajor->opcode()) || spvOpcodeIsSpecConstant(colmajor->opcode()))) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Column Major operand '" << _.getIdName(colmajor_id) << "' must be a boolean constant instruction."; } const auto memory_access_index = (inst->opcode() == SpvOpCooperativeMatrixLoadNV) ? 5u : 4u; if (inst->operands().size() > memory_access_index) { if (auto error = CheckMemoryAccess(_, inst, memory_access_index)) return error; } return SPV_SUCCESS; } spv_result_t ValidatePtrComparison(ValidationState_t& _, const Instruction* inst) { if (_.addressing_model() == SpvAddressingModelLogical && !_.features().variable_pointers) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Instruction cannot for logical addressing model be used without " "a variable pointers capability"; } const auto result_type = _.FindDef(inst->type_id()); if (inst->opcode() == SpvOpPtrDiff) { if (!result_type || result_type->opcode() != SpvOpTypeInt) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Result Type must be an integer scalar"; } } else { if (!result_type || result_type->opcode() != SpvOpTypeBool) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Result Type must be OpTypeBool"; } } const auto op1 = _.FindDef(inst->GetOperandAs(2u)); const auto op2 = _.FindDef(inst->GetOperandAs(3u)); if (!op1 || !op2 || op1->type_id() != op2->type_id()) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The types of Operand 1 and Operand 2 must match"; } const auto op1_type = _.FindDef(op1->type_id()); if (!op1_type || op1_type->opcode() != SpvOpTypePointer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Operand type must be a pointer"; } SpvStorageClass sc = op1_type->GetOperandAs(1u); if (_.addressing_model() == SpvAddressingModelLogical) { if (sc != SpvStorageClassWorkgroup && sc != SpvStorageClassStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Invalid pointer storage class"; } if (sc == SpvStorageClassWorkgroup && !_.HasCapability(SpvCapabilityVariablePointers)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Workgroup storage class pointer requires VariablePointers " "capability to be specified"; } } else if (sc == SpvStorageClassPhysicalStorageBuffer) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Cannot use a pointer in the PhysicalStorageBuffer storage class"; } return SPV_SUCCESS; } } // namespace spv_result_t MemoryPass(ValidationState_t& _, const Instruction* inst) { switch (inst->opcode()) { case SpvOpVariable: if (auto error = ValidateVariable(_, inst)) return error; break; case SpvOpLoad: if (auto error = ValidateLoad(_, inst)) return error; break; case SpvOpStore: if (auto error = ValidateStore(_, inst)) return error; break; case SpvOpCopyMemory: case SpvOpCopyMemorySized: if (auto error = ValidateCopyMemory(_, inst)) return error; break; case SpvOpPtrAccessChain: if (auto error = ValidatePtrAccessChain(_, inst)) return error; break; case SpvOpAccessChain: case SpvOpInBoundsAccessChain: case SpvOpInBoundsPtrAccessChain: if (auto error = ValidateAccessChain(_, inst)) return error; break; case SpvOpArrayLength: if (auto error = ValidateArrayLength(_, inst)) return error; break; case SpvOpCooperativeMatrixLoadNV: case SpvOpCooperativeMatrixStoreNV: if (auto error = ValidateCooperativeMatrixLoadStoreNV(_, inst)) return error; break; case SpvOpCooperativeMatrixLengthNV: if (auto error = ValidateCooperativeMatrixLengthNV(_, inst)) return error; break; case SpvOpPtrEqual: case SpvOpPtrNotEqual: case SpvOpPtrDiff: if (auto error = ValidatePtrComparison(_, inst)) return error; break; case SpvOpImageTexelPointer: case SpvOpGenericPtrMemSemantics: default: break; } return SPV_SUCCESS; } } // namespace val } // namespace spvtools