// Copyright (c) 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/opt/struct_cfg_analysis.h" #include "source/opt/ir_context.h" namespace spvtools { namespace opt { namespace { constexpr uint32_t kMergeNodeIndex = 0; constexpr uint32_t kContinueNodeIndex = 1; } // namespace StructuredCFGAnalysis::StructuredCFGAnalysis(IRContext* ctx) : context_(ctx) { // If this is not a shader, there are no merge instructions, and not // structured CFG to analyze. if (!context_->get_feature_mgr()->HasCapability(spv::Capability::Shader)) { return; } for (auto& func : *context_->module()) { AddBlocksInFunction(&func); } } void StructuredCFGAnalysis::AddBlocksInFunction(Function* func) { if (func->begin() == func->end()) return; std::list order; context_->cfg()->ComputeStructuredOrder(func, &*func->begin(), &order); struct TraversalInfo { ConstructInfo cinfo; uint32_t merge_node; uint32_t continue_node; }; // Set up a stack to keep track of currently active constructs. std::vector state; state.emplace_back(); state[0].cinfo.containing_construct = 0; state[0].cinfo.containing_loop = 0; state[0].cinfo.containing_switch = 0; state[0].cinfo.in_continue = false; state[0].merge_node = 0; state[0].continue_node = 0; for (BasicBlock* block : order) { if (context_->cfg()->IsPseudoEntryBlock(block) || context_->cfg()->IsPseudoExitBlock(block)) { continue; } if (block->id() == state.back().merge_node) { state.pop_back(); } // This works because the structured order is designed to keep the blocks in // the continue construct between the continue header and the merge node. if (block->id() == state.back().continue_node) { state.back().cinfo.in_continue = true; } bb_to_construct_.emplace(std::make_pair(block->id(), state.back().cinfo)); if (Instruction* merge_inst = block->GetMergeInst()) { TraversalInfo new_state; new_state.merge_node = merge_inst->GetSingleWordInOperand(kMergeNodeIndex); new_state.cinfo.containing_construct = block->id(); if (merge_inst->opcode() == spv::Op::OpLoopMerge) { new_state.cinfo.containing_loop = block->id(); new_state.cinfo.containing_switch = 0; new_state.continue_node = merge_inst->GetSingleWordInOperand(kContinueNodeIndex); if (block->id() == new_state.continue_node) { new_state.cinfo.in_continue = true; bb_to_construct_[block->id()].in_continue = true; } else { new_state.cinfo.in_continue = false; } } else { new_state.cinfo.containing_loop = state.back().cinfo.containing_loop; new_state.cinfo.in_continue = state.back().cinfo.in_continue; new_state.continue_node = state.back().continue_node; if (merge_inst->NextNode()->opcode() == spv::Op::OpSwitch) { new_state.cinfo.containing_switch = block->id(); } else { new_state.cinfo.containing_switch = state.back().cinfo.containing_switch; } } state.emplace_back(new_state); merge_blocks_.Set(new_state.merge_node); } } } uint32_t StructuredCFGAnalysis::ContainingConstruct(Instruction* inst) { uint32_t bb = context_->get_instr_block(inst)->id(); return ContainingConstruct(bb); } uint32_t StructuredCFGAnalysis::MergeBlock(uint32_t bb_id) { uint32_t header_id = ContainingConstruct(bb_id); if (header_id == 0) { return 0; } BasicBlock* header = context_->cfg()->block(header_id); Instruction* merge_inst = header->GetMergeInst(); return merge_inst->GetSingleWordInOperand(kMergeNodeIndex); } uint32_t StructuredCFGAnalysis::NestingDepth(uint32_t bb_id) { uint32_t result = 0; // Find the merge block of the current merge construct as long as the block is // inside a merge construct, exiting one for each iteration. for (uint32_t merge_block_id = MergeBlock(bb_id); merge_block_id != 0; merge_block_id = MergeBlock(merge_block_id)) { result++; } return result; } uint32_t StructuredCFGAnalysis::LoopMergeBlock(uint32_t bb_id) { uint32_t header_id = ContainingLoop(bb_id); if (header_id == 0) { return 0; } BasicBlock* header = context_->cfg()->block(header_id); Instruction* merge_inst = header->GetMergeInst(); return merge_inst->GetSingleWordInOperand(kMergeNodeIndex); } uint32_t StructuredCFGAnalysis::LoopContinueBlock(uint32_t bb_id) { uint32_t header_id = ContainingLoop(bb_id); if (header_id == 0) { return 0; } BasicBlock* header = context_->cfg()->block(header_id); Instruction* merge_inst = header->GetMergeInst(); return merge_inst->GetSingleWordInOperand(kContinueNodeIndex); } uint32_t StructuredCFGAnalysis::LoopNestingDepth(uint32_t bb_id) { uint32_t result = 0; // Find the merge block of the current loop as long as the block is inside a // loop, exiting a loop for each iteration. for (uint32_t merge_block_id = LoopMergeBlock(bb_id); merge_block_id != 0; merge_block_id = LoopMergeBlock(merge_block_id)) { result++; } return result; } uint32_t StructuredCFGAnalysis::SwitchMergeBlock(uint32_t bb_id) { uint32_t header_id = ContainingSwitch(bb_id); if (header_id == 0) { return 0; } BasicBlock* header = context_->cfg()->block(header_id); Instruction* merge_inst = header->GetMergeInst(); return merge_inst->GetSingleWordInOperand(kMergeNodeIndex); } bool StructuredCFGAnalysis::IsContinueBlock(uint32_t bb_id) { assert(bb_id != 0); return LoopContinueBlock(bb_id) == bb_id; } bool StructuredCFGAnalysis::IsInContainingLoopsContinueConstruct( uint32_t bb_id) { auto it = bb_to_construct_.find(bb_id); if (it == bb_to_construct_.end()) { return false; } return it->second.in_continue; } bool StructuredCFGAnalysis::IsInContinueConstruct(uint32_t bb_id) { while (bb_id != 0) { if (IsInContainingLoopsContinueConstruct(bb_id)) { return true; } bb_id = ContainingLoop(bb_id); } return false; } bool StructuredCFGAnalysis::IsMergeBlock(uint32_t bb_id) { return merge_blocks_.Get(bb_id); } std::unordered_set StructuredCFGAnalysis::FindFuncsCalledFromContinue() { std::unordered_set called_from_continue; std::queue funcs_to_process; // First collect the functions that are called directly from a continue // construct. for (Function& func : *context_->module()) { for (auto& bb : func) { if (IsInContainingLoopsContinueConstruct(bb.id())) { for (const Instruction& inst : bb) { if (inst.opcode() == spv::Op::OpFunctionCall) { funcs_to_process.push(inst.GetSingleWordInOperand(0)); } } } } } // Now collect all of the functions that are indirectly called as well. while (!funcs_to_process.empty()) { uint32_t func_id = funcs_to_process.front(); funcs_to_process.pop(); Function* func = context_->GetFunction(func_id); if (called_from_continue.insert(func_id).second) { context_->AddCalls(func, &funcs_to_process); } } return called_from_continue; } } // namespace opt } // namespace spvtools