// Copyright (c) 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_FUZZ_FUZZER_PASS_H_ #define SOURCE_FUZZ_FUZZER_PASS_H_ #include #include #include "source/fuzz/fuzzer_context.h" #include "source/fuzz/protobufs/spirvfuzz_protobufs.h" #include "source/fuzz/transformation.h" #include "source/fuzz/transformation_context.h" #include "source/opt/ir_context.h" namespace spvtools { namespace fuzz { // Interface for applying a pass of transformations to a module. class FuzzerPass { public: FuzzerPass(opt::IRContext* ir_context, TransformationContext* transformation_context, FuzzerContext* fuzzer_context, protobufs::TransformationSequence* transformations); virtual ~FuzzerPass(); // Applies the pass to the module |ir_context_|, assuming and updating // information from |transformation_context_|, and using |fuzzer_context_| to // guide the process. Appends to |transformations_| all transformations that // were applied during the pass. virtual void Apply() = 0; protected: opt::IRContext* GetIRContext() const { return ir_context_; } TransformationContext* GetTransformationContext() const { return transformation_context_; } FuzzerContext* GetFuzzerContext() const { return fuzzer_context_; } protobufs::TransformationSequence* GetTransformations() const { return transformations_; } // Returns all instructions that are *available* at |inst_it|, which is // required to be inside block |block| of function |function| - that is, all // instructions at global scope and all instructions that strictly dominate // |inst_it|. // // Filters said instructions to return only those that satisfy the // |instruction_is_relevant| predicate. This, for instance, could ignore all // instructions that have a particular decoration. std::vector FindAvailableInstructions( opt::Function* function, opt::BasicBlock* block, const opt::BasicBlock::iterator& inst_it, std::function instruction_is_relevant) const; // A helper method that iterates through each instruction in each block, at // all times tracking an instruction descriptor that allows the latest // instruction to be located even if it has no result id. // // The code to manipulate the instruction descriptor is a bit fiddly. The // point of this method is to avoiding having to duplicate it in multiple // transformation passes. // // The function |action| is invoked for each instruction |inst_it| in block // |block| of function |function| that is encountered. The // |instruction_descriptor| parameter to the function object allows |inst_it| // to be identified. // // In most intended use cases, the job of |action| is to randomly decide // whether to try to apply some transformation, and then - if selected - to // attempt to apply it. void ForEachInstructionWithInstructionDescriptor( std::function< void(opt::Function* function, opt::BasicBlock* block, opt::BasicBlock::iterator inst_it, const protobufs::InstructionDescriptor& instruction_descriptor)> action); // A generic helper for applying a transformation that should be applicable // by construction, and adding it to the sequence of applied transformations. void ApplyTransformation(const Transformation& transformation) { assert(transformation.IsApplicable(GetIRContext(), *GetTransformationContext()) && "Transformation should be applicable by construction."); transformation.Apply(GetIRContext(), GetTransformationContext()); *GetTransformations()->add_transformation() = transformation.ToMessage(); } // Returns the id of an OpTypeBool instruction. If such an instruction does // not exist, a transformation is applied to add it. uint32_t FindOrCreateBoolType(); // Returns the id of an OpTypeInt instruction, with width and signedness // specified by |width| and |is_signed|, respectively. If such an instruction // does not exist, a transformation is applied to add it. uint32_t FindOrCreateIntegerType(uint32_t width, bool is_signed); // Returns the id of an OpTypeFloat instruction, with width specified by // |width|. If such an instruction does not exist, a transformation is // applied to add it. uint32_t FindOrCreateFloatType(uint32_t width); // Returns the id of an OpTypeFunction % %<...argument_id> // instruction. If such an instruction doesn't exist, a transformation // is applied to create a new one. uint32_t FindOrCreateFunctionType(uint32_t return_type_id, const std::vector& argument_id); // Returns the id of an OpTypeVector instruction, with |component_type_id| // (which must already exist) as its base type, and |component_count| // elements (which must be in the range [2, 4]). If such an instruction does // not exist, a transformation is applied to add it. uint32_t FindOrCreateVectorType(uint32_t component_type_id, uint32_t component_count); // Returns the id of an OpTypeMatrix instruction, with |column_count| columns // and |row_count| rows (each of which must be in the range [2, 4]). If the // float and vector types required to build this matrix type or the matrix // type itself do not exist, transformations are applied to add them. uint32_t FindOrCreateMatrixType(uint32_t column_count, uint32_t row_count); // Returns the id of an OpTypeStruct instruction with |component_type_ids| as // type ids for struct's components. If no such a struct type exists, // transformations are applied to add it. |component_type_ids| may not contain // a result id of an OpTypeFunction. uint32_t FindOrCreateStructType( const std::vector& component_type_ids); // Returns the id of a pointer type with base type |base_type_id| (which must // already exist) and storage class |storage_class|. A transformation is // applied to add the pointer if it does not already exist. uint32_t FindOrCreatePointerType(uint32_t base_type_id, SpvStorageClass storage_class); // Returns the id of an OpTypePointer instruction, with a integer base // type of width and signedness specified by |width| and |is_signed|, // respectively. If the pointer type or required integer base type do not // exist, transformations are applied to add them. uint32_t FindOrCreatePointerToIntegerType(uint32_t width, bool is_signed, SpvStorageClass storage_class); // Returns the id of an OpConstant instruction, with a integer type of // width and signedness specified by |width| and |is_signed|, respectively, // with |words| as its value. If either the required integer type or the // constant do not exist, transformations are applied to add them. uint32_t FindOrCreateIntegerConstant(const std::vector& words, uint32_t width, bool is_signed); // Returns the id of an OpConstant instruction, with a floating-point // type of width specified by |width|, with |words| as its value. If either // the required floating-point type or the constant do not exist, // transformations are applied to add them. uint32_t FindOrCreateFloatConstant(const std::vector& words, uint32_t width); // Returns the id of an OpConstantTrue or OpConstantFalse instruction, // according to |value|. If either the required instruction or the bool // type do not exist, transformations are applied to add them. uint32_t FindOrCreateBoolConstant(bool value); // Returns the id of an OpConstant instruction of type with |type_id| // that consists of |words|. If that instruction doesn't exist, // transformations are applied to add it. |type_id| must be a valid // result id of either scalar or boolean OpType* instruction that exists // in the module. uint32_t FindOrCreateConstant(const std::vector& words, uint32_t type_id); // Returns the id of an OpConstantComposite uint32_t FindOrCreateCompositeConstant( const std::vector& component_ids, uint32_t type_id); // Returns the result id of an instruction of the form: // %id = OpUndef %|type_id| // If no such instruction exists, a transformation is applied to add it. uint32_t FindOrCreateGlobalUndef(uint32_t type_id); // Define a *basic type* to be an integer, boolean or floating-point type, // or a matrix, vector, struct or fixed-size array built from basic types. In // particular, a basic type cannot contain an opaque type (such as an image), // or a runtime-sized array. // // Yields a pair, (basic_type_ids, basic_type_ids_to_pointers), such that: // - basic_type_ids captures every basic type declared in the module. // - basic_type_ids_to_pointers maps every such basic type to the sequence // of all pointer types that have storage class |storage_class| and the // given basic type as their pointee type. The sequence may be empty for // some basic types if no pointers to those types are defined for the given // storage class, and the sequence will have multiple elements if there are // repeated pointer declarations for the same basic type and storage class. std::pair, std::map>> GetAvailableBasicTypesAndPointers(SpvStorageClass storage_class) const; // Given a type id, |scalar_or_composite_type_id|, which must correspond to // some scalar or composite type, returns the result id of an instruction // defining a constant of the given type that is zero or false at everywhere. // If such an instruction does not yet exist, transformations are applied to // add it. // // Examples: // --------------+------------------------------- // TYPE | RESULT is id corresponding to // --------------+------------------------------- // bool | false // --------------+------------------------------- // bvec4 | (false, false, false, false) // --------------+------------------------------- // float | 0.0 // --------------+------------------------------- // vec2 | (0.0, 0.0) // --------------+------------------------------- // int[3] | [0, 0, 0] // --------------+------------------------------- // struct S { | // int i; | S(0, false, (0u, 0u)) // bool b; | // uint2 u; | // } | // --------------+------------------------------- uint32_t FindOrCreateZeroConstant(uint32_t scalar_or_composite_type_id); private: // Array, matrix and vector are *homogeneous* composite types in the sense // that every component of one of these types has the same type. Given a // homogeneous composite type instruction, |composite_type_instruction|, // returns the id of a composite constant instruction for which every element // is zero/false. If such an instruction does not yet exist, transformations // are applied to add it. uint32_t GetZeroConstantForHomogeneousComposite( const opt::Instruction& composite_type_instruction, uint32_t component_type_id, uint32_t num_components); // Helper to find an existing composite constant instruction of the given // composite type with the given constant components, or to apply // transformations to create such an instruction if it does not yet exist. // Parameter |composite_type_instruction| must be a composite type // instruction. The parameters |constants| and |constant_ids| must have the // same size, and it must be the case that for each i, |constant_ids[i]| is // the result id of an instruction that defines |constants[i]|. uint32_t FindOrCreateCompositeConstant( const opt::Instruction& composite_type_instruction, const std::vector& constants, const std::vector& constant_ids); opt::IRContext* ir_context_; TransformationContext* transformation_context_; FuzzerContext* fuzzer_context_; protobufs::TransformationSequence* transformations_; }; } // namespace fuzz } // namespace spvtools #endif // SOURCE_FUZZ_FUZZER_PASS_H_