// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Performs validation on instructions that appear inside of a SPIR-V block. #include "source/val/validate.h" #include #include #include #include #include #include "source/binary.h" #include "source/diagnostic.h" #include "source/enum_set.h" #include "source/enum_string_mapping.h" #include "source/extensions.h" #include "source/opcode.h" #include "source/operand.h" #include "source/spirv_constant.h" #include "source/spirv_definition.h" #include "source/spirv_target_env.h" #include "source/spirv_validator_options.h" #include "source/util/string_utils.h" #include "source/val/function.h" #include "source/val/validation_state.h" namespace spvtools { namespace val { namespace { std::string ToString(const CapabilitySet& capabilities, const AssemblyGrammar& grammar) { std::stringstream ss; capabilities.ForEach([&grammar, &ss](SpvCapability cap) { spv_operand_desc desc; if (SPV_SUCCESS == grammar.lookupOperand(SPV_OPERAND_TYPE_CAPABILITY, cap, &desc)) ss << desc->name << " "; else ss << cap << " "; }); return ss.str(); } // Returns capabilities that enable an opcode. An empty result is interpreted // as no prohibition of use of the opcode. If the result is non-empty, then // the opcode may only be used if at least one of the capabilities is specified // by the module. CapabilitySet EnablingCapabilitiesForOp(const ValidationState_t& state, SpvOp opcode) { // Exceptions for SPV_AMD_shader_ballot switch (opcode) { // Normally these would require Group capability case SpvOpGroupIAddNonUniformAMD: case SpvOpGroupFAddNonUniformAMD: case SpvOpGroupFMinNonUniformAMD: case SpvOpGroupUMinNonUniformAMD: case SpvOpGroupSMinNonUniformAMD: case SpvOpGroupFMaxNonUniformAMD: case SpvOpGroupUMaxNonUniformAMD: case SpvOpGroupSMaxNonUniformAMD: if (state.HasExtension(kSPV_AMD_shader_ballot)) return CapabilitySet(); break; default: break; } // Look it up in the grammar spv_opcode_desc opcode_desc = {}; if (SPV_SUCCESS == state.grammar().lookupOpcode(opcode, &opcode_desc)) { return state.grammar().filterCapsAgainstTargetEnv( opcode_desc->capabilities, opcode_desc->numCapabilities); } return CapabilitySet(); } // Returns SPV_SUCCESS if the given operand is enabled by capabilities declared // in the module. Otherwise issues an error message and returns // SPV_ERROR_INVALID_CAPABILITY. spv_result_t CheckRequiredCapabilities(const ValidationState_t& state, const Instruction* inst, size_t which_operand, spv_operand_type_t type, uint32_t operand) { // Mere mention of PointSize, ClipDistance, or CullDistance in a Builtin // decoration does not require the associated capability. The use of such // a variable value should trigger the capability requirement, but that's // not implemented yet. This rule is independent of target environment. // See https://github.com/KhronosGroup/SPIRV-Tools/issues/365 if (type == SPV_OPERAND_TYPE_BUILT_IN) { switch (operand) { case SpvBuiltInPointSize: case SpvBuiltInClipDistance: case SpvBuiltInCullDistance: return SPV_SUCCESS; default: break; } } else if (type == SPV_OPERAND_TYPE_FP_ROUNDING_MODE) { // Allow all FP rounding modes if requested if (state.features().free_fp_rounding_mode) { return SPV_SUCCESS; } } else if (type == SPV_OPERAND_TYPE_GROUP_OPERATION && state.features().group_ops_reduce_and_scans && (operand <= uint32_t(SpvGroupOperationExclusiveScan))) { // Allow certain group operations if requested. return SPV_SUCCESS; } CapabilitySet enabling_capabilities; spv_operand_desc operand_desc = nullptr; const auto lookup_result = state.grammar().lookupOperand(type, operand, &operand_desc); if (lookup_result == SPV_SUCCESS) { // Allow FPRoundingMode decoration if requested. if (type == SPV_OPERAND_TYPE_DECORATION && operand_desc->value == SpvDecorationFPRoundingMode) { if (state.features().free_fp_rounding_mode) return SPV_SUCCESS; // Vulkan API requires more capabilities on rounding mode. if (spvIsVulkanEnv(state.context()->target_env)) { enabling_capabilities.Add(SpvCapabilityStorageUniformBufferBlock16); enabling_capabilities.Add(SpvCapabilityStorageUniform16); enabling_capabilities.Add(SpvCapabilityStoragePushConstant16); enabling_capabilities.Add(SpvCapabilityStorageInputOutput16); } } else { enabling_capabilities = state.grammar().filterCapsAgainstTargetEnv( operand_desc->capabilities, operand_desc->numCapabilities); } if (!state.HasAnyOfCapabilities(enabling_capabilities)) { return state.diag(SPV_ERROR_INVALID_CAPABILITY, inst) << "Operand " << which_operand << " of " << spvOpcodeString(inst->opcode()) << " requires one of these capabilities: " << ToString(enabling_capabilities, state.grammar()); } } return SPV_SUCCESS; } // Returns operand's required extensions. ExtensionSet RequiredExtensions(const ValidationState_t& state, spv_operand_type_t type, uint32_t operand) { spv_operand_desc operand_desc; if (state.grammar().lookupOperand(type, operand, &operand_desc) == SPV_SUCCESS) { assert(operand_desc); // If this operand is incorporated into core SPIR-V before or in the current // target environment, we don't require extensions anymore. if (spvVersionForTargetEnv(state.grammar().target_env()) >= operand_desc->minVersion) return {}; return {operand_desc->numExtensions, operand_desc->extensions}; } return {}; } // Returns SPV_ERROR_INVALID_BINARY and emits a diagnostic if the instruction // is explicitly reserved in the SPIR-V core spec. Otherwise return // SPV_SUCCESS. spv_result_t ReservedCheck(ValidationState_t& _, const Instruction* inst) { const SpvOp opcode = inst->opcode(); switch (opcode) { // These instructions are enabled by a capability, but should never // be used anyway. case SpvOpImageSparseSampleProjImplicitLod: case SpvOpImageSparseSampleProjExplicitLod: case SpvOpImageSparseSampleProjDrefImplicitLod: case SpvOpImageSparseSampleProjDrefExplicitLod: { spv_opcode_desc inst_desc; _.grammar().lookupOpcode(opcode, &inst_desc); return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "Invalid Opcode name 'Op" << inst_desc->name << "'"; } default: break; } return SPV_SUCCESS; } // Returns SPV_ERROR_INVALID_BINARY and emits a diagnostic if the instruction // is invalid because of an execution environment constraint. spv_result_t EnvironmentCheck(ValidationState_t& _, const Instruction* inst) { const SpvOp opcode = inst->opcode(); switch (opcode) { case SpvOpUndef: if (_.features().bans_op_undef) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "OpUndef is disallowed"; } break; default: break; } return SPV_SUCCESS; } // Returns SPV_ERROR_INVALID_CAPABILITY and emits a diagnostic if the // instruction is invalid because the required capability isn't declared // in the module. spv_result_t CapabilityCheck(ValidationState_t& _, const Instruction* inst) { const SpvOp opcode = inst->opcode(); CapabilitySet opcode_caps = EnablingCapabilitiesForOp(_, opcode); if (!_.HasAnyOfCapabilities(opcode_caps)) { return _.diag(SPV_ERROR_INVALID_CAPABILITY, inst) << "Opcode " << spvOpcodeString(opcode) << " requires one of these capabilities: " << ToString(opcode_caps, _.grammar()); } for (size_t i = 0; i < inst->operands().size(); ++i) { const auto& operand = inst->operand(i); const auto word = inst->word(operand.offset); if (spvOperandIsConcreteMask(operand.type)) { // Check for required capabilities for each bit position of the mask. for (uint32_t mask_bit = 0x80000000; mask_bit; mask_bit >>= 1) { if (word & mask_bit) { spv_result_t status = CheckRequiredCapabilities(_, inst, i + 1, operand.type, mask_bit); if (status != SPV_SUCCESS) return status; } } } else if (spvIsIdType(operand.type)) { // TODO(dneto): Check the value referenced by this Id, if we can compute // it. For now, just punt, to fix issue 248: // https://github.com/KhronosGroup/SPIRV-Tools/issues/248 } else { // Check the operand word as a whole. spv_result_t status = CheckRequiredCapabilities(_, inst, i + 1, operand.type, word); if (status != SPV_SUCCESS) return status; } } return SPV_SUCCESS; } // Checks that all extensions required by the given instruction's operands were // declared in the module. spv_result_t ExtensionCheck(ValidationState_t& _, const Instruction* inst) { const SpvOp opcode = inst->opcode(); for (size_t operand_index = 0; operand_index < inst->operands().size(); ++operand_index) { const auto& operand = inst->operand(operand_index); const uint32_t word = inst->word(operand.offset); const ExtensionSet required_extensions = RequiredExtensions(_, operand.type, word); if (!_.HasAnyOfExtensions(required_extensions)) { return _.diag(SPV_ERROR_MISSING_EXTENSION, inst) << spvtools::utils::CardinalToOrdinal(operand_index + 1) << " operand of " << spvOpcodeString(opcode) << ": operand " << word << " requires one of these extensions: " << ExtensionSetToString(required_extensions); } } return SPV_SUCCESS; } // Checks that the instruction can be used in this target environment's base // version. Assumes that CapabilityCheck has checked direct capability // dependencies for the opcode. spv_result_t VersionCheck(ValidationState_t& _, const Instruction* inst) { const auto opcode = inst->opcode(); spv_opcode_desc inst_desc; const spv_result_t r = _.grammar().lookupOpcode(opcode, &inst_desc); assert(r == SPV_SUCCESS); (void)r; const auto min_version = inst_desc->minVersion; if (inst_desc->numCapabilities > 0u) { // We already checked that the direct capability dependency has been // satisfied. We don't need to check any further. return SPV_SUCCESS; } ExtensionSet exts(inst_desc->numExtensions, inst_desc->extensions); if (exts.IsEmpty()) { // If no extensions can enable this instruction, then emit error messages // only concerning core SPIR-V versions if errors happen. if (min_version == ~0u) { return _.diag(SPV_ERROR_WRONG_VERSION, inst) << spvOpcodeString(opcode) << " is reserved for future use."; } if (spvVersionForTargetEnv(_.grammar().target_env()) < min_version) { return _.diag(SPV_ERROR_WRONG_VERSION, inst) << spvOpcodeString(opcode) << " requires " << spvTargetEnvDescription( static_cast(min_version)) << " at minimum."; } // Otherwise, we only error out when no enabling extensions are registered. } else if (!_.HasAnyOfExtensions(exts)) { if (min_version == ~0u) { return _.diag(SPV_ERROR_MISSING_EXTENSION, inst) << spvOpcodeString(opcode) << " requires one of the following extensions: " << ExtensionSetToString(exts); } if (static_cast(_.grammar().target_env()) < min_version) { return _.diag(SPV_ERROR_WRONG_VERSION, inst) << spvOpcodeString(opcode) << " requires " << spvTargetEnvDescription( static_cast(min_version)) << " at minimum or one of the following extensions: " << ExtensionSetToString(exts); } } return SPV_SUCCESS; } // Checks that the Resuld is within the valid bound. spv_result_t LimitCheckIdBound(ValidationState_t& _, const Instruction* inst) { if (inst->id() >= _.getIdBound()) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "Result '" << inst->id() << "' must be less than the ID bound '" << _.getIdBound() << "'."; } return SPV_SUCCESS; } // Checks that the number of OpTypeStruct members is within the limit. spv_result_t LimitCheckStruct(ValidationState_t& _, const Instruction* inst) { if (SpvOpTypeStruct != inst->opcode()) { return SPV_SUCCESS; } // Number of members is the number of operands of the instruction minus 1. // One operand is the result ID. const uint16_t limit = static_cast(_.options()->universal_limits_.max_struct_members); if (inst->operands().size() - 1 > limit) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "Number of OpTypeStruct members (" << inst->operands().size() - 1 << ") has exceeded the limit (" << limit << ")."; } // Section 2.17 of SPIRV Spec specifies that the "Structure Nesting Depth" // must be less than or equal to 255. // This is interpreted as structures including other structures as members. // The code does not follow pointers or look into arrays to see if we reach a // structure downstream. // The nesting depth of a struct is 1+(largest depth of any member). // Scalars are at depth 0. uint32_t max_member_depth = 0; // Struct members start at word 2 of OpTypeStruct instruction. for (size_t word_i = 2; word_i < inst->words().size(); ++word_i) { auto member = inst->word(word_i); auto memberTypeInstr = _.FindDef(member); if (memberTypeInstr && SpvOpTypeStruct == memberTypeInstr->opcode()) { max_member_depth = std::max( max_member_depth, _.struct_nesting_depth(memberTypeInstr->id())); } } const uint32_t depth_limit = _.options()->universal_limits_.max_struct_depth; const uint32_t cur_depth = 1 + max_member_depth; _.set_struct_nesting_depth(inst->id(), cur_depth); if (cur_depth > depth_limit) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "Structure Nesting Depth may not be larger than " << depth_limit << ". Found " << cur_depth << "."; } return SPV_SUCCESS; } // Checks that the number of (literal, label) pairs in OpSwitch is within the // limit. spv_result_t LimitCheckSwitch(ValidationState_t& _, const Instruction* inst) { if (SpvOpSwitch == inst->opcode()) { // The instruction syntax is as follows: // OpSwitch literal label literal label ... // literal,label pairs come after the first 2 operands. // It is guaranteed at this point that num_operands is an even numner. size_t num_pairs = (inst->operands().size() - 2) / 2; const unsigned int num_pairs_limit = _.options()->universal_limits_.max_switch_branches; if (num_pairs > num_pairs_limit) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "Number of (literal, label) pairs in OpSwitch (" << num_pairs << ") exceeds the limit (" << num_pairs_limit << ")."; } } return SPV_SUCCESS; } // Ensure the number of variables of the given class does not exceed the limit. spv_result_t LimitCheckNumVars(ValidationState_t& _, const uint32_t var_id, const SpvStorageClass storage_class) { if (SpvStorageClassFunction == storage_class) { _.registerLocalVariable(var_id); const uint32_t num_local_vars_limit = _.options()->universal_limits_.max_local_variables; if (_.num_local_vars() > num_local_vars_limit) { return _.diag(SPV_ERROR_INVALID_BINARY, nullptr) << "Number of local variables ('Function' Storage Class) " "exceeded the valid limit (" << num_local_vars_limit << ")."; } } else { _.registerGlobalVariable(var_id); const uint32_t num_global_vars_limit = _.options()->universal_limits_.max_global_variables; if (_.num_global_vars() > num_global_vars_limit) { return _.diag(SPV_ERROR_INVALID_BINARY, nullptr) << "Number of Global Variables (Storage Class other than " "'Function') exceeded the valid limit (" << num_global_vars_limit << ")."; } } return SPV_SUCCESS; } // Parses OpExtension instruction and logs warnings if unsuccessful. void CheckIfKnownExtension(ValidationState_t& _, const Instruction* inst) { const std::string extension_str = GetExtensionString(&(inst->c_inst())); Extension extension; if (!GetExtensionFromString(extension_str.c_str(), &extension)) { _.diag(SPV_ERROR_INVALID_BINARY, inst) << "Found unrecognized extension " << extension_str; return; } } } // namespace spv_result_t InstructionPass(ValidationState_t& _, const Instruction* inst) { const SpvOp opcode = inst->opcode(); if (opcode == SpvOpExtension) { CheckIfKnownExtension(_, inst); } else if (opcode == SpvOpCapability) { _.RegisterCapability(inst->GetOperandAs(0)); } else if (opcode == SpvOpMemoryModel) { if (_.has_memory_model_specified()) { return _.diag(SPV_ERROR_INVALID_LAYOUT, inst) << "OpMemoryModel should only be provided once."; } _.set_addressing_model(inst->GetOperandAs(0)); _.set_memory_model(inst->GetOperandAs(1)); if (_.memory_model() != SpvMemoryModelVulkanKHR && _.HasCapability(SpvCapabilityVulkanMemoryModelKHR)) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "VulkanMemoryModelKHR capability must only be specified if the " "VulkanKHR memory model is used."; } } else if (opcode == SpvOpExecutionMode) { const uint32_t entry_point = inst->word(1); _.RegisterExecutionModeForEntryPoint(entry_point, SpvExecutionMode(inst->word(2))); } else if (opcode == SpvOpVariable) { const auto storage_class = inst->GetOperandAs(2); if (auto error = LimitCheckNumVars(_, inst->id(), storage_class)) { return error; } if (storage_class == SpvStorageClassGeneric) return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "OpVariable storage class cannot be Generic"; if (_.current_layout_section() == kLayoutFunctionDefinitions) { if (storage_class != SpvStorageClassFunction) { return _.diag(SPV_ERROR_INVALID_LAYOUT, inst) << "Variables must have a function[7] storage class inside" " of a function"; } if (_.current_function().IsFirstBlock( _.current_function().current_block()->id()) == false) { return _.diag(SPV_ERROR_INVALID_CFG, inst) << "Variables can only be defined " "in the first block of a " "function"; } } else { if (storage_class == SpvStorageClassFunction) { return _.diag(SPV_ERROR_INVALID_LAYOUT, inst) << "Variables can not have a function[7] storage class " "outside of a function"; } } } // SPIR-V Spec 2.16.3: Validation Rules for Kernel Capabilities: The // Signedness in OpTypeInt must always be 0. if (SpvOpTypeInt == inst->opcode() && _.HasCapability(SpvCapabilityKernel) && inst->GetOperandAs(2) != 0u) { return _.diag(SPV_ERROR_INVALID_BINARY, inst) << "The Signedness in OpTypeInt " "must always be 0 when Kernel " "capability is used."; } if (auto error = ExtensionCheck(_, inst)) return error; if (auto error = ReservedCheck(_, inst)) return error; if (auto error = EnvironmentCheck(_, inst)) return error; if (auto error = CapabilityCheck(_, inst)) return error; if (auto error = LimitCheckIdBound(_, inst)) return error; if (auto error = LimitCheckStruct(_, inst)) return error; if (auto error = LimitCheckSwitch(_, inst)) return error; if (auto error = VersionCheck(_, inst)) return error; // All instruction checks have passed. return SPV_SUCCESS; } } // namespace val } // namespace spvtools