// Copyright (c) 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef LIBSPIRV_OPT_CONSTANTS_H_ #define LIBSPIRV_OPT_CONSTANTS_H_ #include #include #include #include #include #include #include "make_unique.h" #include "module.h" #include "type_manager.h" #include "types.h" #include "util/hex_float.h" namespace spvtools { namespace opt { class IRContext; namespace analysis { // Class hierarchy to represent the normal constants defined through // OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull and // OpConstantComposite instructions. // TODO(qining): Add class for constants defined with OpConstantSampler. class Constant; class ScalarConstant; class IntConstant; class FloatConstant; class BoolConstant; class CompositeConstant; class StructConstant; class VectorConstant; class MatrixConstant; class ArrayConstant; class NullConstant; class ConstantManager; // Abstract class for a SPIR-V constant. It has a bunch of As methods, // which is used as a way to probe the actual class Constant { public: Constant() = delete; virtual ~Constant() {} // Make a deep copy of this constant. virtual std::unique_ptr Copy() const = 0; // reflections virtual ScalarConstant* AsScalarConstant() { return nullptr; } virtual IntConstant* AsIntConstant() { return nullptr; } virtual FloatConstant* AsFloatConstant() { return nullptr; } virtual BoolConstant* AsBoolConstant() { return nullptr; } virtual CompositeConstant* AsCompositeConstant() { return nullptr; } virtual StructConstant* AsStructConstant() { return nullptr; } virtual VectorConstant* AsVectorConstant() { return nullptr; } virtual MatrixConstant* AsMatrixConstant() { return nullptr; } virtual ArrayConstant* AsArrayConstant() { return nullptr; } virtual NullConstant* AsNullConstant() { return nullptr; } virtual const ScalarConstant* AsScalarConstant() const { return nullptr; } virtual const IntConstant* AsIntConstant() const { return nullptr; } virtual const FloatConstant* AsFloatConstant() const { return nullptr; } virtual const BoolConstant* AsBoolConstant() const { return nullptr; } virtual const CompositeConstant* AsCompositeConstant() const { return nullptr; } virtual const StructConstant* AsStructConstant() const { return nullptr; } virtual const VectorConstant* AsVectorConstant() const { return nullptr; } virtual const MatrixConstant* AsMatrixConstant() const { return nullptr; } virtual const ArrayConstant* AsArrayConstant() const { return nullptr; } virtual const NullConstant* AsNullConstant() const { return nullptr; } // Returns the float representation of the constant. Must be a 32 bit // Float type. float GetFloat() const; // Returns the double representation of the constant. Must be a 64 bit // Float type. double GetDouble() const; // Returns the double representation of the constant. Must be a 32-bit or // 64-bit Float type. double GetValueAsDouble() const; // Returns uint32_t representation of the constant. Must be a 32 bit // Integer type. uint32_t GetU32() const; // Returns uint64_t representation of the constant. Must be a 64 bit // Integer type. uint64_t GetU64() const; // Returns int32_t representation of the constant. Must be a 32 bit // Integer type. int32_t GetS32() const; // Returns int64_t representation of the constant. Must be a 64 bit // Integer type. int64_t GetS64() const; // Returns true if the constant is a zero or a composite containing 0s. virtual bool IsZero() const { return false; }; const Type* type() const { return type_; } // Returns an std::vector containing the elements of |constant|. The type of // |constant| must be |Vector|. std::vector GetVectorComponents( ConstantManager* const_mgr) const; protected: Constant(const Type* ty) : type_(ty) {} // The type of this constant. const Type* type_; }; // Abstract class for scalar type constants. class ScalarConstant : public Constant { public: ScalarConstant() = delete; ScalarConstant* AsScalarConstant() override { return this; } const ScalarConstant* AsScalarConstant() const override { return this; } // Returns a const reference of the value of this constant in 32-bit words. virtual const std::vector& words() const { return words_; } // Returns true if the value is zero. bool IsZero() const override { bool is_zero = true; for (uint32_t v : words()) { if (v != 0) { is_zero = false; break; } } return is_zero; } protected: ScalarConstant(const Type* ty, const std::vector& w) : Constant(ty), words_(w) {} ScalarConstant(const Type* ty, std::vector&& w) : Constant(ty), words_(std::move(w)) {} std::vector words_; }; // Integer type constant. class IntConstant : public ScalarConstant { public: IntConstant(const Integer* ty, const std::vector& w) : ScalarConstant(ty, w) {} IntConstant(const Integer* ty, std::vector&& w) : ScalarConstant(ty, std::move(w)) {} IntConstant* AsIntConstant() override { return this; } const IntConstant* AsIntConstant() const override { return this; } int32_t GetS32BitValue() const { // Relies on signed values smaller than 32-bit being sign extended. See // section 2.2.1 of the SPIR-V spec. assert(words().size() == 1); return words()[0]; } uint32_t GetU32BitValue() const { // Relies on unsigned values smaller than 32-bit being zero extended. See // section 2.2.1 of the SPIR-V spec. assert(words().size() == 1); return words()[0]; } int64_t GetS64BitValue() const { // Relies on unsigned values smaller than 64-bit being sign extended. See // section 2.2.1 of the SPIR-V spec. assert(words().size() == 2); return static_cast(words()[1]) << 32 | static_cast(words()[0]); } uint64_t GetU64BitValue() const { // Relies on unsigned values smaller than 64-bit being zero extended. See // section 2.2.1 of the SPIR-V spec. assert(words().size() == 2); return static_cast(words()[1]) << 32 | static_cast(words()[0]); } // Make a copy of this IntConstant instance. std::unique_ptr CopyIntConstant() const { return MakeUnique(type_->AsInteger(), words_); } std::unique_ptr Copy() const override { return std::unique_ptr(CopyIntConstant().release()); } }; // Float type constant. class FloatConstant : public ScalarConstant { public: FloatConstant(const Float* ty, const std::vector& w) : ScalarConstant(ty, w) {} FloatConstant(const Float* ty, std::vector&& w) : ScalarConstant(ty, std::move(w)) {} FloatConstant* AsFloatConstant() override { return this; } const FloatConstant* AsFloatConstant() const override { return this; } // Make a copy of this FloatConstant instance. std::unique_ptr CopyFloatConstant() const { return MakeUnique(type_->AsFloat(), words_); } std::unique_ptr Copy() const override { return std::unique_ptr(CopyFloatConstant().release()); } // Returns the float value of |this|. The type of |this| must be |Float| with // width of 32. float GetFloatValue() const { assert(type()->AsFloat()->width() == 32 && "Not a 32-bit floating point value."); utils::FloatProxy a(words()[0]); return a.getAsFloat(); } // Returns the double value of |this|. The type of |this| must be |Float| // with width of 64. double GetDoubleValue() const { assert(type()->AsFloat()->width() == 64 && "Not a 32-bit floating point value."); uint64_t combined_words = words()[1]; combined_words = combined_words << 32; combined_words |= words()[0]; utils::FloatProxy a(combined_words); return a.getAsFloat(); } }; // Bool type constant. class BoolConstant : public ScalarConstant { public: BoolConstant(const Bool* ty, bool v) : ScalarConstant(ty, {static_cast(v)}), value_(v) {} BoolConstant* AsBoolConstant() override { return this; } const BoolConstant* AsBoolConstant() const override { return this; } // Make a copy of this BoolConstant instance. std::unique_ptr CopyBoolConstant() const { return MakeUnique(type_->AsBool(), value_); } std::unique_ptr Copy() const override { return std::unique_ptr(CopyBoolConstant().release()); } bool value() const { return value_; } private: bool value_; }; // Abstract class for composite constants. class CompositeConstant : public Constant { public: CompositeConstant() = delete; CompositeConstant* AsCompositeConstant() override { return this; } const CompositeConstant* AsCompositeConstant() const override { return this; } // Returns a const reference of the components held in this composite // constant. virtual const std::vector& GetComponents() const { return components_; } bool IsZero() const override { for (const Constant* c : GetComponents()) { if (!c->IsZero()) { return false; } } return true; } protected: CompositeConstant(const Type* ty) : Constant(ty), components_() {} CompositeConstant(const Type* ty, const std::vector& components) : Constant(ty), components_(components) {} CompositeConstant(const Type* ty, std::vector&& components) : Constant(ty), components_(std::move(components)) {} std::vector components_; }; // Struct type constant. class StructConstant : public CompositeConstant { public: StructConstant(const Struct* ty) : CompositeConstant(ty) {} StructConstant(const Struct* ty, const std::vector& components) : CompositeConstant(ty, components) {} StructConstant(const Struct* ty, std::vector&& components) : CompositeConstant(ty, std::move(components)) {} StructConstant* AsStructConstant() override { return this; } const StructConstant* AsStructConstant() const override { return this; } // Make a copy of this StructConstant instance. std::unique_ptr CopyStructConstant() const { return MakeUnique(type_->AsStruct(), components_); } std::unique_ptr Copy() const override { return std::unique_ptr(CopyStructConstant().release()); } }; // Vector type constant. class VectorConstant : public CompositeConstant { public: VectorConstant(const Vector* ty) : CompositeConstant(ty), component_type_(ty->element_type()) {} VectorConstant(const Vector* ty, const std::vector& components) : CompositeConstant(ty, components), component_type_(ty->element_type()) {} VectorConstant(const Vector* ty, std::vector&& components) : CompositeConstant(ty, std::move(components)), component_type_(ty->element_type()) {} VectorConstant* AsVectorConstant() override { return this; } const VectorConstant* AsVectorConstant() const override { return this; } // Make a copy of this VectorConstant instance. std::unique_ptr CopyVectorConstant() const { auto another = MakeUnique(type_->AsVector()); another->components_.insert(another->components_.end(), components_.begin(), components_.end()); return another; } std::unique_ptr Copy() const override { return std::unique_ptr(CopyVectorConstant().release()); } const Type* component_type() const { return component_type_; } private: const Type* component_type_; }; // Matrix type constant. class MatrixConstant : public CompositeConstant { public: MatrixConstant(const Matrix* ty) : CompositeConstant(ty), component_type_(ty->element_type()) {} MatrixConstant(const Matrix* ty, const std::vector& components) : CompositeConstant(ty, components), component_type_(ty->element_type()) {} MatrixConstant(const Vector* ty, std::vector&& components) : CompositeConstant(ty, std::move(components)), component_type_(ty->element_type()) {} MatrixConstant* AsMatrixConstant() override { return this; } const MatrixConstant* AsMatrixConstant() const override { return this; } // Make a copy of this MatrixConstant instance. std::unique_ptr CopyMatrixConstant() const { auto another = MakeUnique(type_->AsMatrix()); another->components_.insert(another->components_.end(), components_.begin(), components_.end()); return another; } std::unique_ptr Copy() const override { return std::unique_ptr(CopyMatrixConstant().release()); } const Type* component_type() { return component_type_; } private: const Type* component_type_; }; // Array type constant. class ArrayConstant : public CompositeConstant { public: ArrayConstant(const Array* ty) : CompositeConstant(ty) {} ArrayConstant(const Array* ty, const std::vector& components) : CompositeConstant(ty, components) {} ArrayConstant(const Array* ty, std::vector&& components) : CompositeConstant(ty, std::move(components)) {} ArrayConstant* AsArrayConstant() override { return this; } const ArrayConstant* AsArrayConstant() const override { return this; } // Make a copy of this ArrayConstant instance. std::unique_ptr CopyArrayConstant() const { return MakeUnique(type_->AsArray(), components_); } std::unique_ptr Copy() const override { return std::unique_ptr(CopyArrayConstant().release()); } }; // Null type constant. class NullConstant : public Constant { public: NullConstant(const Type* ty) : Constant(ty) {} NullConstant* AsNullConstant() override { return this; } const NullConstant* AsNullConstant() const override { return this; } // Make a copy of this NullConstant instance. std::unique_ptr CopyNullConstant() const { return MakeUnique(type_); } std::unique_ptr Copy() const override { return std::unique_ptr(CopyNullConstant().release()); } bool IsZero() const override { return true; }; }; // Hash function for Constant instances. Use the structure of the constant as // the key. struct ConstantHash { void add_pointer(std::u32string* h, const void* p) const { uint64_t ptr_val = reinterpret_cast(p); h->push_back(static_cast(ptr_val >> 32)); h->push_back(static_cast(ptr_val)); } size_t operator()(const Constant* const_val) const { std::u32string h; add_pointer(&h, const_val->type()); if (const auto scalar = const_val->AsScalarConstant()) { for (const auto& w : scalar->words()) { h.push_back(w); } } else if (const auto composite = const_val->AsCompositeConstant()) { for (const auto& c : composite->GetComponents()) { add_pointer(&h, c); } } else if (const_val->AsNullConstant()) { h.push_back(0); } else { assert( false && "Tried to compute the hash value of an invalid Constant instance."); } return std::hash()(h); } }; // Equality comparison structure for two constants. struct ConstantEqual { bool operator()(const Constant* c1, const Constant* c2) const { if (c1->type() != c2->type()) { return false; } if (const auto& s1 = c1->AsScalarConstant()) { const auto& s2 = c2->AsScalarConstant(); return s2 && s1->words() == s2->words(); } else if (const auto& composite1 = c1->AsCompositeConstant()) { const auto& composite2 = c2->AsCompositeConstant(); return composite2 && composite1->GetComponents() == composite2->GetComponents(); } else if (c1->AsNullConstant()) return c2->AsNullConstant() != nullptr; else assert(false && "Tried to compare two invalid Constant instances."); return false; } }; // This class represents a pool of constants. class ConstantManager { public: ConstantManager(opt::IRContext* ctx); opt::IRContext* context() const { return ctx_; } // Gets or creates a unique Constant instance of type |type| and a vector of // constant defining words |words|. If a Constant instance existed already in // the constant pool, it returns a pointer to it. Otherwise, it creates one // using CreateConstant. If a new Constant instance cannot be created, it // returns nullptr. const Constant* GetConstant( const Type* type, const std::vector& literal_words_or_ids); template const Constant* GetConstant(const Type* type, const C& literal_words_or_ids) { return GetConstant(type, std::vector(literal_words_or_ids.begin(), literal_words_or_ids.end())); } // Gets or creates a Constant instance to hold the constant value of the given // instruction. It returns a pointer to a Constant instance or nullptr if it // could not create the constant. const Constant* GetConstantFromInst(opt::Instruction* inst); // Gets or creates a constant defining instruction for the given Constant |c|. // If |c| had already been defined, it returns a pointer to the existing // declaration. Otherwise, it calls BuildInstructionAndAddToModule. If the // optional |pos| is given, it will insert any newly created instructions at // the given instruction iterator position. Otherwise, it inserts the new // instruction at the end of the current module's types section. // // |type_id| is an optional argument for disambiguating equivalent types. If // |type_id| is specified, it is used as the type of the constant when a new // instruction is created. Otherwise the type of the constant is derived by // getting an id from the type manager for |c|. // // When |type_id| is not zero, the type of |c| must be the type returned by // type manager when given |type_id|. opt::Instruction* GetDefiningInstruction( const Constant* c, uint32_t type_id = 0, opt::Module::inst_iterator* pos = nullptr); // Creates a constant defining instruction for the given Constant instance // and inserts the instruction at the position specified by the given // instruction iterator. Returns a pointer to the created instruction if // succeeded, otherwise returns a null pointer. The instruction iterator // points to the same instruction before and after the insertion. This is the // only method that actually manages id creation/assignment and instruction // creation/insertion for a new Constant instance. // // |type_id| is an optional argument for disambiguating equivalent types. If // |type_id| is specified, it is used as the type of the constant. Otherwise // the type of the constant is derived by getting an id from the type manager // for |c|. opt::Instruction* BuildInstructionAndAddToModule( const Constant* c, opt::Module::inst_iterator* pos, uint32_t type_id = 0); // A helper function to get the result type of the given instruction. Returns // nullptr if the instruction does not have a type id (type id is 0). Type* GetType(const opt::Instruction* inst) const; // A helper function to get the collected normal constant with the given id. // Returns the pointer to the Constant instance in case it is found. // Otherwise, it returns a null pointer. const Constant* FindDeclaredConstant(uint32_t id) const { auto iter = id_to_const_val_.find(id); return (iter != id_to_const_val_.end()) ? iter->second : nullptr; } // A helper function to get the id of a collected constant with the pointer // to the Constant instance. Returns 0 in case the constant is not found. uint32_t FindDeclaredConstant(const Constant* c) const { auto iter = const_val_to_id_.find(c); return (iter != const_val_to_id_.end()) ? iter->second : 0; } // Returns the canonical constant that has the same structure and value as the // given Constant |cst|. If none is found, it returns nullptr. // // TODO: Should be able to give a type id to disambiguate types with the same // structure. const Constant* FindConstant(const Constant* c) const { auto it = const_pool_.find(c); return (it != const_pool_.end()) ? *it : nullptr; } // Registers a new constant |cst| in the constant pool. If the constant // existed already, it returns a pointer to the previously existing Constant // in the pool. Otherwise, it returns |cst|. const Constant* RegisterConstant(const Constant* cst) { auto ret = const_pool_.insert(cst); return *ret.first; } // A helper function to get a vector of Constant instances with the specified // ids. If it can not find the Constant instance for any one of the ids, // it returns an empty vector. std::vector GetConstantsFromIds( const std::vector& ids) const; // Returns a vector of constants representing each in operand. If an operand // is not constant its entry is nullptr. std::vector GetOperandConstants( opt::Instruction* inst) const; // Records a mapping between |inst| and the constant value generated by it. // It returns true if a new Constant was successfully mapped, false if |inst| // generates no constant values. bool MapInst(opt::Instruction* inst) { if (auto cst = GetConstantFromInst(inst)) { MapConstantToInst(cst, inst); return true; } return false; } void RemoveId(uint32_t id) { auto it = id_to_const_val_.find(id); if (it != id_to_const_val_.end()) { const_val_to_id_.erase(it->second); id_to_const_val_.erase(it); } } // Records a new mapping between |inst| and |const_value|. This updates the // two mappings |id_to_const_val_| and |const_val_to_id_|. void MapConstantToInst(const Constant* const_value, opt::Instruction* inst) { const_val_to_id_[const_value] = inst->result_id(); id_to_const_val_[inst->result_id()] = const_value; } private: // Creates a Constant instance with the given type and a vector of constant // defining words. Returns a unique pointer to the created Constant instance // if the Constant instance can be created successfully. To create scalar // type constants, the vector should contain the constant value in 32 bit // words and the given type must be of type Bool, Integer or Float. To create // composite type constants, the vector should contain the component ids, and // those component ids should have been recorded before as Normal Constants. // And the given type must be of type Struct, Vector or Array. When creating // VectorType Constant instance, the components must be scalars of the same // type, either Bool, Integer or Float. If any of the rules above failed, the // creation will fail and nullptr will be returned. If the vector is empty, // a NullConstant instance will be created with the given type. const Constant* CreateConstant( const Type* type, const std::vector& literal_words_or_ids) const; // Creates an instruction with the given result id to declare a constant // represented by the given Constant instance. Returns an unique pointer to // the created instruction if the instruction can be created successfully. // Otherwise, returns a null pointer. // // |type_id| is an optional argument for disambiguating equivalent types. If // |type_id| is specified, it is used as the type of the constant. Otherwise // the type of the constant is derived by getting an id from the type manager // for |c|. std::unique_ptr CreateInstruction( uint32_t result_id, const Constant* c, uint32_t type_id = 0) const; // Creates an OpConstantComposite instruction with the given result id and // the CompositeConst instance which represents a composite constant. Returns // an unique pointer to the created instruction if succeeded. Otherwise // returns a null pointer. // // |type_id| is an optional argument for disambiguating equivalent types. If // |type_id| is specified, it is used as the type of the constant. Otherwise // the type of the constant is derived by getting an id from the type manager // for |c|. std::unique_ptr CreateCompositeInstruction( uint32_t result_id, const CompositeConstant* cc, uint32_t type_id = 0) const; // IR context that owns this constant manager. opt::IRContext* ctx_; // A mapping from the result ids of Normal Constants to their // Constant instances. All Normal Constants in the module, either // existing ones before optimization or the newly generated ones, should have // their Constant instance stored and their result id registered in this map. std::unordered_map id_to_const_val_; // A mapping from the Constant instance of Normal Constants to their // result id in the module. This is a mirror map of |id_to_const_val_|. All // Normal Constants that defining instructions in the module should have // their Constant and their result id registered here. std::unordered_map const_val_to_id_; // The constant pool. All created constants are registered here. std::unordered_set const_pool_; }; } // namespace analysis } // namespace opt } // namespace spvtools #endif // LIBSPIRV_OPT_CONSTANTS_H_