// Copyright (c) 2017 The Khronos Group Inc. // Copyright (c) 2017 Valve Corporation // Copyright (c) 2017 LunarG Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "inline_pass.h" #include "cfa.h" // Indices of operands in SPIR-V instructions static const int kSpvFunctionCallFunctionId = 2; static const int kSpvFunctionCallArgumentId = 3; static const int kSpvReturnValueId = 0; static const int kSpvLoopMergeMergeBlockId = 0; static const int kSpvLoopMergeContinueTargetIdInIdx = 1; namespace spvtools { namespace opt { uint32_t InlinePass::AddPointerToType(uint32_t type_id, SpvStorageClass storage_class) { uint32_t resultId = TakeNextId(); std::unique_ptr type_inst(new opt::Instruction( context(), SpvOpTypePointer, 0, resultId, {{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS, {uint32_t(storage_class)}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_id}}})); context()->AddType(std::move(type_inst)); analysis::Type* pointeeTy; std::unique_ptr pointerTy; std::tie(pointeeTy, pointerTy) = context()->get_type_mgr()->GetTypeAndPointerType(type_id, SpvStorageClassFunction); context()->get_type_mgr()->RegisterType(resultId, *pointerTy); return resultId; } void InlinePass::AddBranch(uint32_t label_id, std::unique_ptr* block_ptr) { std::unique_ptr newBranch(new opt::Instruction( context(), SpvOpBranch, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {label_id}}})); (*block_ptr)->AddInstruction(std::move(newBranch)); } void InlinePass::AddBranchCond(uint32_t cond_id, uint32_t true_id, uint32_t false_id, std::unique_ptr* block_ptr) { std::unique_ptr newBranch(new opt::Instruction( context(), SpvOpBranchConditional, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {cond_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {true_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {false_id}}})); (*block_ptr)->AddInstruction(std::move(newBranch)); } void InlinePass::AddLoopMerge(uint32_t merge_id, uint32_t continue_id, std::unique_ptr* block_ptr) { std::unique_ptr newLoopMerge(new opt::Instruction( context(), SpvOpLoopMerge, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {merge_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {continue_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_LOOP_CONTROL, {0}}})); (*block_ptr)->AddInstruction(std::move(newLoopMerge)); } void InlinePass::AddStore(uint32_t ptr_id, uint32_t val_id, std::unique_ptr* block_ptr) { std::unique_ptr newStore(new opt::Instruction( context(), SpvOpStore, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {val_id}}})); (*block_ptr)->AddInstruction(std::move(newStore)); } void InlinePass::AddLoad(uint32_t type_id, uint32_t resultId, uint32_t ptr_id, std::unique_ptr* block_ptr) { std::unique_ptr newLoad(new opt::Instruction( context(), SpvOpLoad, type_id, resultId, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}}})); (*block_ptr)->AddInstruction(std::move(newLoad)); } std::unique_ptr InlinePass::NewLabel(uint32_t label_id) { std::unique_ptr newLabel( new opt::Instruction(context(), SpvOpLabel, 0, label_id, {})); return newLabel; } uint32_t InlinePass::GetFalseId() { if (false_id_ != 0) return false_id_; false_id_ = get_module()->GetGlobalValue(SpvOpConstantFalse); if (false_id_ != 0) return false_id_; uint32_t boolId = get_module()->GetGlobalValue(SpvOpTypeBool); if (boolId == 0) { boolId = TakeNextId(); get_module()->AddGlobalValue(SpvOpTypeBool, boolId, 0); } false_id_ = TakeNextId(); get_module()->AddGlobalValue(SpvOpConstantFalse, false_id_, boolId); return false_id_; } void InlinePass::MapParams( opt::Function* calleeFn, opt::BasicBlock::iterator call_inst_itr, std::unordered_map* callee2caller) { int param_idx = 0; calleeFn->ForEachParam([&call_inst_itr, ¶m_idx, &callee2caller](const opt::Instruction* cpi) { const uint32_t pid = cpi->result_id(); (*callee2caller)[pid] = call_inst_itr->GetSingleWordOperand( kSpvFunctionCallArgumentId + param_idx); ++param_idx; }); } void InlinePass::CloneAndMapLocals( opt::Function* calleeFn, std::vector>* new_vars, std::unordered_map* callee2caller) { auto callee_block_itr = calleeFn->begin(); auto callee_var_itr = callee_block_itr->begin(); while (callee_var_itr->opcode() == SpvOp::SpvOpVariable) { std::unique_ptr var_inst( callee_var_itr->Clone(callee_var_itr->context())); uint32_t newId = TakeNextId(); get_decoration_mgr()->CloneDecorations(callee_var_itr->result_id(), newId); var_inst->SetResultId(newId); (*callee2caller)[callee_var_itr->result_id()] = newId; new_vars->push_back(std::move(var_inst)); ++callee_var_itr; } } uint32_t InlinePass::CreateReturnVar( opt::Function* calleeFn, std::vector>* new_vars) { uint32_t returnVarId = 0; const uint32_t calleeTypeId = calleeFn->type_id(); analysis::Type* calleeType = context()->get_type_mgr()->GetType(calleeTypeId); if (calleeType->AsVoid() == nullptr) { // Find or create ptr to callee return type. uint32_t returnVarTypeId = context()->get_type_mgr()->FindPointerToType( calleeTypeId, SpvStorageClassFunction); if (returnVarTypeId == 0) returnVarTypeId = AddPointerToType(calleeTypeId, SpvStorageClassFunction); // Add return var to new function scope variables. returnVarId = TakeNextId(); std::unique_ptr var_inst(new opt::Instruction( context(), SpvOpVariable, returnVarTypeId, returnVarId, {{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}}})); new_vars->push_back(std::move(var_inst)); } get_decoration_mgr()->CloneDecorations(calleeFn->result_id(), returnVarId); return returnVarId; } bool InlinePass::IsSameBlockOp(const opt::Instruction* inst) const { return inst->opcode() == SpvOpSampledImage || inst->opcode() == SpvOpImage; } void InlinePass::CloneSameBlockOps( std::unique_ptr* inst, std::unordered_map* postCallSB, std::unordered_map* preCallSB, std::unique_ptr* block_ptr) { (*inst)->ForEachInId( [&postCallSB, &preCallSB, &block_ptr, this](uint32_t* iid) { const auto mapItr = (*postCallSB).find(*iid); if (mapItr == (*postCallSB).end()) { const auto mapItr2 = (*preCallSB).find(*iid); if (mapItr2 != (*preCallSB).end()) { // Clone pre-call same-block ops, map result id. const opt::Instruction* inInst = mapItr2->second; std::unique_ptr sb_inst( inInst->Clone(inInst->context())); CloneSameBlockOps(&sb_inst, postCallSB, preCallSB, block_ptr); const uint32_t rid = sb_inst->result_id(); const uint32_t nid = this->TakeNextId(); get_decoration_mgr()->CloneDecorations(rid, nid); sb_inst->SetResultId(nid); (*postCallSB)[rid] = nid; *iid = nid; (*block_ptr)->AddInstruction(std::move(sb_inst)); } } else { // Reset same-block op operand. *iid = mapItr->second; } }); } void InlinePass::GenInlineCode( std::vector>* new_blocks, std::vector>* new_vars, opt::BasicBlock::iterator call_inst_itr, opt::UptrVectorIterator call_block_itr) { // Map from all ids in the callee to their equivalent id in the caller // as callee instructions are copied into caller. std::unordered_map callee2caller; // Pre-call same-block insts std::unordered_map preCallSB; // Post-call same-block op ids std::unordered_map postCallSB; // Invalidate the def-use chains. They are not kept up to date while // inlining. However, certain calls try to keep them up-to-date if they are // valid. These operations can fail. context()->InvalidateAnalyses(opt::IRContext::kAnalysisDefUse); opt::Function* calleeFn = id2function_[call_inst_itr->GetSingleWordOperand( kSpvFunctionCallFunctionId)]; // Check for multiple returns in the callee. auto fi = multi_return_funcs_.find(calleeFn->result_id()); const bool multiReturn = fi != multi_return_funcs_.end(); // Map parameters to actual arguments. MapParams(calleeFn, call_inst_itr, &callee2caller); // Define caller local variables for all callee variables and create map to // them. CloneAndMapLocals(calleeFn, new_vars, &callee2caller); // Create return var if needed. uint32_t returnVarId = CreateReturnVar(calleeFn, new_vars); // Create set of callee result ids. Used to detect forward references std::unordered_set callee_result_ids; calleeFn->ForEachInst([&callee_result_ids](const opt::Instruction* cpi) { const uint32_t rid = cpi->result_id(); if (rid != 0) callee_result_ids.insert(rid); }); // If the caller is in a single-block loop, and the callee has multiple // blocks, then the normal inlining logic will place the OpLoopMerge in // the last of several blocks in the loop. Instead, it should be placed // at the end of the first block. First determine if the caller is in a // single block loop. We'll wait to move the OpLoopMerge until the end // of the regular inlining logic, and only if necessary. bool caller_is_single_block_loop = false; bool caller_is_loop_header = false; if (auto* loop_merge = call_block_itr->GetLoopMergeInst()) { caller_is_loop_header = true; caller_is_single_block_loop = call_block_itr->id() == loop_merge->GetSingleWordInOperand(kSpvLoopMergeContinueTargetIdInIdx); } bool callee_begins_with_structured_header = (*(calleeFn->begin())).GetMergeInst() != nullptr; // Clone and map callee code. Copy caller block code to beginning of // first block and end of last block. bool prevInstWasReturn = false; uint32_t singleTripLoopHeaderId = 0; uint32_t singleTripLoopContinueId = 0; uint32_t returnLabelId = 0; bool multiBlocks = false; const uint32_t calleeTypeId = calleeFn->type_id(); // new_blk_ptr is a new basic block in the caller. New instructions are // written to it. It is created when we encounter the OpLabel // of the first callee block. It is appended to new_blocks only when // it is complete. std::unique_ptr new_blk_ptr; calleeFn->ForEachInst([&new_blocks, &callee2caller, &call_block_itr, &call_inst_itr, &new_blk_ptr, &prevInstWasReturn, &returnLabelId, &returnVarId, caller_is_loop_header, callee_begins_with_structured_header, &calleeTypeId, &multiBlocks, &postCallSB, &preCallSB, multiReturn, &singleTripLoopHeaderId, &singleTripLoopContinueId, &callee_result_ids, this](const opt::Instruction* cpi) { switch (cpi->opcode()) { case SpvOpFunction: case SpvOpFunctionParameter: // Already processed break; case SpvOpVariable: if (cpi->NumInOperands() == 2) { assert(callee2caller.count(cpi->result_id()) && "Expected the variable to have already been mapped."); uint32_t new_var_id = callee2caller.at(cpi->result_id()); // The initializer must be a constant or global value. No mapped // should be used. uint32_t val_id = cpi->GetSingleWordInOperand(1); AddStore(new_var_id, val_id, &new_blk_ptr); } break; case SpvOpUnreachable: case SpvOpKill: { // Generate a return label so that we split the block with the function // call. Copy the terminator into the new block. if (returnLabelId == 0) returnLabelId = this->TakeNextId(); std::unique_ptr terminator( new opt::Instruction(context(), cpi->opcode(), 0, 0, {})); new_blk_ptr->AddInstruction(std::move(terminator)); break; } case SpvOpLabel: { // If previous instruction was early return, insert branch // instruction to return block. if (prevInstWasReturn) { if (returnLabelId == 0) returnLabelId = this->TakeNextId(); AddBranch(returnLabelId, &new_blk_ptr); prevInstWasReturn = false; } // Finish current block (if it exists) and get label for next block. uint32_t labelId; bool firstBlock = false; if (new_blk_ptr != nullptr) { new_blocks->push_back(std::move(new_blk_ptr)); // If result id is already mapped, use it, otherwise get a new // one. const uint32_t rid = cpi->result_id(); const auto mapItr = callee2caller.find(rid); labelId = (mapItr != callee2caller.end()) ? mapItr->second : this->TakeNextId(); } else { // First block needs to use label of original block // but map callee label in case of phi reference. labelId = call_block_itr->id(); callee2caller[cpi->result_id()] = labelId; firstBlock = true; } // Create first/next block. new_blk_ptr.reset(new opt::BasicBlock(NewLabel(labelId))); if (firstBlock) { // Copy contents of original caller block up to call instruction. for (auto cii = call_block_itr->begin(); cii != call_inst_itr; cii = call_block_itr->begin()) { opt::Instruction* inst = &*cii; inst->RemoveFromList(); std::unique_ptr cp_inst(inst); // Remember same-block ops for possible regeneration. if (IsSameBlockOp(&*cp_inst)) { auto* sb_inst_ptr = cp_inst.get(); preCallSB[cp_inst->result_id()] = sb_inst_ptr; } new_blk_ptr->AddInstruction(std::move(cp_inst)); } if (caller_is_loop_header && callee_begins_with_structured_header) { // We can't place both the caller's merge instruction and another // merge instruction in the same block. So split the calling block. // Insert an unconditional branch to a new guard block. Later, // once we know the ID of the last block, we will move the caller's // OpLoopMerge from the last generated block into the first block. // We also wait to avoid invalidating various iterators. const auto guard_block_id = this->TakeNextId(); AddBranch(guard_block_id, &new_blk_ptr); new_blocks->push_back(std::move(new_blk_ptr)); // Start the next block. new_blk_ptr.reset(new opt::BasicBlock(NewLabel(guard_block_id))); // Reset the mapping of the callee's entry block to point to // the guard block. Do this so we can fix up phis later on to // satisfy dominance. callee2caller[cpi->result_id()] = guard_block_id; } // If callee has multiple returns, insert a header block for // single-trip loop that will encompass callee code. Start postheader // block. // // Note: Consider the following combination: // - the caller is a single block loop // - the callee does not begin with a structure header // - the callee has multiple returns. // We still need to split the caller block and insert a guard block. // But we only need to do it once. We haven't done it yet, but the // single-trip loop header will serve the same purpose. if (multiReturn) { singleTripLoopHeaderId = this->TakeNextId(); AddBranch(singleTripLoopHeaderId, &new_blk_ptr); new_blocks->push_back(std::move(new_blk_ptr)); new_blk_ptr.reset( new opt::BasicBlock(NewLabel(singleTripLoopHeaderId))); returnLabelId = this->TakeNextId(); singleTripLoopContinueId = this->TakeNextId(); AddLoopMerge(returnLabelId, singleTripLoopContinueId, &new_blk_ptr); uint32_t postHeaderId = this->TakeNextId(); AddBranch(postHeaderId, &new_blk_ptr); new_blocks->push_back(std::move(new_blk_ptr)); new_blk_ptr.reset(new opt::BasicBlock(NewLabel(postHeaderId))); multiBlocks = true; // Reset the mapping of the callee's entry block to point to // the post-header block. Do this so we can fix up phis later // on to satisfy dominance. callee2caller[cpi->result_id()] = postHeaderId; } } else { multiBlocks = true; } } break; case SpvOpReturnValue: { // Store return value to return variable. assert(returnVarId != 0); uint32_t valId = cpi->GetInOperand(kSpvReturnValueId).words[0]; const auto mapItr = callee2caller.find(valId); if (mapItr != callee2caller.end()) { valId = mapItr->second; } AddStore(returnVarId, valId, &new_blk_ptr); // Remember we saw a return; if followed by a label, will need to // insert branch. prevInstWasReturn = true; } break; case SpvOpReturn: { // Remember we saw a return; if followed by a label, will need to // insert branch. prevInstWasReturn = true; } break; case SpvOpFunctionEnd: { // If there was an early return, we generated a return label id // for it. Now we have to generate the return block with that Id. if (returnLabelId != 0) { // If previous instruction was return, insert branch instruction // to return block. if (prevInstWasReturn) AddBranch(returnLabelId, &new_blk_ptr); if (multiReturn) { // If we generated a loop header to for the single-trip loop // to accommodate multiple returns, insert the continue // target block now, with a false branch back to the loop header. new_blocks->push_back(std::move(new_blk_ptr)); new_blk_ptr.reset( new opt::BasicBlock(NewLabel(singleTripLoopContinueId))); AddBranchCond(GetFalseId(), singleTripLoopHeaderId, returnLabelId, &new_blk_ptr); } // Generate the return block. new_blocks->push_back(std::move(new_blk_ptr)); new_blk_ptr.reset(new opt::BasicBlock(NewLabel(returnLabelId))); multiBlocks = true; } // Load return value into result id of call, if it exists. if (returnVarId != 0) { const uint32_t resId = call_inst_itr->result_id(); assert(resId != 0); AddLoad(calleeTypeId, resId, returnVarId, &new_blk_ptr); } // Copy remaining instructions from caller block. for (opt::Instruction* inst = call_inst_itr->NextNode(); inst; inst = call_inst_itr->NextNode()) { inst->RemoveFromList(); std::unique_ptr cp_inst(inst); // If multiple blocks generated, regenerate any same-block // instruction that has not been seen in this last block. if (multiBlocks) { CloneSameBlockOps(&cp_inst, &postCallSB, &preCallSB, &new_blk_ptr); // Remember same-block ops in this block. if (IsSameBlockOp(&*cp_inst)) { const uint32_t rid = cp_inst->result_id(); postCallSB[rid] = rid; } } new_blk_ptr->AddInstruction(std::move(cp_inst)); } // Finalize inline code. new_blocks->push_back(std::move(new_blk_ptr)); } break; default: { // Copy callee instruction and remap all input Ids. std::unique_ptr cp_inst(cpi->Clone(context())); cp_inst->ForEachInId([&callee2caller, &callee_result_ids, this](uint32_t* iid) { const auto mapItr = callee2caller.find(*iid); if (mapItr != callee2caller.end()) { *iid = mapItr->second; } else if (callee_result_ids.find(*iid) != callee_result_ids.end()) { // Forward reference. Allocate a new id, map it, // use it and check for it when remapping result ids const uint32_t nid = this->TakeNextId(); callee2caller[*iid] = nid; *iid = nid; } }); // If result id is non-zero, remap it. If already mapped, use mapped // value, else use next id. const uint32_t rid = cp_inst->result_id(); if (rid != 0) { const auto mapItr = callee2caller.find(rid); uint32_t nid; if (mapItr != callee2caller.end()) { nid = mapItr->second; } else { nid = this->TakeNextId(); callee2caller[rid] = nid; } cp_inst->SetResultId(nid); get_decoration_mgr()->CloneDecorations(rid, nid); } new_blk_ptr->AddInstruction(std::move(cp_inst)); } break; } }); if (caller_is_loop_header && (new_blocks->size() > 1)) { // Move the OpLoopMerge from the last block back to the first, where // it belongs. auto& first = new_blocks->front(); auto& last = new_blocks->back(); assert(first != last); // Insert a modified copy of the loop merge into the first block. auto loop_merge_itr = last->tail(); --loop_merge_itr; assert(loop_merge_itr->opcode() == SpvOpLoopMerge); std::unique_ptr cp_inst(loop_merge_itr->Clone(context())); if (caller_is_single_block_loop) { // Also, update its continue target to point to the last block. cp_inst->SetInOperand(kSpvLoopMergeContinueTargetIdInIdx, {last->id()}); } first->tail().InsertBefore(std::move(cp_inst)); // Remove the loop merge from the last block. loop_merge_itr->RemoveFromList(); delete &*loop_merge_itr; } // Update block map given replacement blocks. for (auto& blk : *new_blocks) { id2block_[blk->id()] = &*blk; } } bool InlinePass::IsInlinableFunctionCall(const opt::Instruction* inst) { if (inst->opcode() != SpvOp::SpvOpFunctionCall) return false; const uint32_t calleeFnId = inst->GetSingleWordOperand(kSpvFunctionCallFunctionId); const auto ci = inlinable_.find(calleeFnId); return ci != inlinable_.cend(); } void InlinePass::UpdateSucceedingPhis( std::vector>& new_blocks) { const auto firstBlk = new_blocks.begin(); const auto lastBlk = new_blocks.end() - 1; const uint32_t firstId = (*firstBlk)->id(); const uint32_t lastId = (*lastBlk)->id(); const opt::BasicBlock& const_last_block = *lastBlk->get(); const_last_block.ForEachSuccessorLabel( [&firstId, &lastId, this](const uint32_t succ) { opt::BasicBlock* sbp = this->id2block_[succ]; sbp->ForEachPhiInst([&firstId, &lastId](opt::Instruction* phi) { phi->ForEachInId([&firstId, &lastId](uint32_t* id) { if (*id == firstId) *id = lastId; }); }); }); } bool InlinePass::HasMultipleReturns(opt::Function* func) { bool seenReturn = false; bool multipleReturns = false; for (auto& blk : *func) { auto terminal_ii = blk.cend(); --terminal_ii; if (terminal_ii->opcode() == SpvOpReturn || terminal_ii->opcode() == SpvOpReturnValue) { if (seenReturn) { multipleReturns = true; break; } seenReturn = true; } } return multipleReturns; } void InlinePass::ComputeStructuredSuccessors(opt::Function* func) { // If header, make merge block first successor. for (auto& blk : *func) { uint32_t mbid = blk.MergeBlockIdIfAny(); if (mbid != 0) { block2structured_succs_[&blk].push_back(id2block_[mbid]); } // Add true successors. const auto& const_blk = blk; const_blk.ForEachSuccessorLabel([&blk, this](const uint32_t sbid) { block2structured_succs_[&blk].push_back(id2block_[sbid]); }); } } InlinePass::GetBlocksFunction InlinePass::StructuredSuccessorsFunction() { return [this](const opt::BasicBlock* block) { return &(block2structured_succs_[block]); }; } bool InlinePass::HasNoReturnInLoop(opt::Function* func) { // If control not structured, do not do loop/return analysis // TODO: Analyze returns in non-structured control flow if (!context()->get_feature_mgr()->HasCapability(SpvCapabilityShader)) return false; // Compute structured block order. This order has the property // that dominators are before all blocks they dominate and merge blocks // are after all blocks that are in the control constructs of their header. ComputeStructuredSuccessors(func); auto ignore_block = [](cbb_ptr) {}; auto ignore_edge = [](cbb_ptr, cbb_ptr) {}; std::list structuredOrder; CFA::DepthFirstTraversal( &*func->begin(), StructuredSuccessorsFunction(), ignore_block, [&](cbb_ptr b) { structuredOrder.push_front(b); }, ignore_edge); // Search for returns in loops. Only need to track outermost loop bool return_in_loop = false; uint32_t outerLoopMergeId = 0; for (auto& blk : structuredOrder) { // Exiting current outer loop if (blk->id() == outerLoopMergeId) outerLoopMergeId = 0; // Return block auto terminal_ii = blk->cend(); --terminal_ii; if (terminal_ii->opcode() == SpvOpReturn || terminal_ii->opcode() == SpvOpReturnValue) { if (outerLoopMergeId != 0) { return_in_loop = true; break; } } else if (terminal_ii != blk->cbegin()) { auto merge_ii = terminal_ii; --merge_ii; // Entering outermost loop if (merge_ii->opcode() == SpvOpLoopMerge && outerLoopMergeId == 0) outerLoopMergeId = merge_ii->GetSingleWordOperand(kSpvLoopMergeMergeBlockId); } } return !return_in_loop; } void InlinePass::AnalyzeReturns(opt::Function* func) { // Look for multiple returns if (!HasMultipleReturns(func)) { no_return_in_loop_.insert(func->result_id()); return; } multi_return_funcs_.insert(func->result_id()); // If multiple returns, see if any are in a loop if (HasNoReturnInLoop(func)) no_return_in_loop_.insert(func->result_id()); } bool InlinePass::IsInlinableFunction(opt::Function* func) { // We can only inline a function if it has blocks. if (func->cbegin() == func->cend()) return false; // Do not inline functions with returns in loops. Currently early return // functions are inlined by wrapping them in a one trip loop and implementing // the returns as a branch to the loop's merge block. However, this can only // done validly if the return was not in a loop in the original function. // Also remember functions with multiple (early) returns. AnalyzeReturns(func); return no_return_in_loop_.find(func->result_id()) != no_return_in_loop_.cend(); } void InlinePass::InitializeInline() { false_id_ = 0; // clear collections id2function_.clear(); id2block_.clear(); block2structured_succs_.clear(); inlinable_.clear(); no_return_in_loop_.clear(); multi_return_funcs_.clear(); for (auto& fn : *get_module()) { // Initialize function and block maps. id2function_[fn.result_id()] = &fn; for (auto& blk : fn) { id2block_[blk.id()] = &blk; } // Compute inlinability if (IsInlinableFunction(&fn)) inlinable_.insert(fn.result_id()); } } InlinePass::InlinePass() {} } // namespace opt } // namespace spvtools