// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/opt/ir_context.h" #include #include #include #include #include "OpenCLDebugInfo100.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "source/opt/pass.h" #include "test/opt/pass_fixture.h" #include "test/opt/pass_utils.h" namespace spvtools { namespace opt { namespace { using Analysis = IRContext::Analysis; using ::testing::Each; using ::testing::UnorderedElementsAre; class DummyPassPreservesNothing : public Pass { public: DummyPassPreservesNothing(Status s) : Pass(), status_to_return_(s) {} const char* name() const override { return "dummy-pass"; } Status Process() override { return status_to_return_; } private: Status status_to_return_; }; class DummyPassPreservesAll : public Pass { public: DummyPassPreservesAll(Status s) : Pass(), status_to_return_(s) {} const char* name() const override { return "dummy-pass"; } Status Process() override { return status_to_return_; } Analysis GetPreservedAnalyses() override { return Analysis(IRContext::kAnalysisEnd - 1); } private: Status status_to_return_; }; class DummyPassPreservesFirst : public Pass { public: DummyPassPreservesFirst(Status s) : Pass(), status_to_return_(s) {} const char* name() const override { return "dummy-pass"; } Status Process() override { return status_to_return_; } Analysis GetPreservedAnalyses() override { return IRContext::kAnalysisBegin; } private: Status status_to_return_; }; using IRContextTest = PassTest<::testing::Test>; TEST_F(IRContextTest, IndividualValidAfterBuild) { std::unique_ptr module(new Module()); IRContext localContext(SPV_ENV_UNIVERSAL_1_2, std::move(module), spvtools::MessageConsumer()); for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { localContext.BuildInvalidAnalyses(i); EXPECT_TRUE(localContext.AreAnalysesValid(i)); } } TEST_F(IRContextTest, AllValidAfterBuild) { std::unique_ptr module = MakeUnique(); IRContext localContext(SPV_ENV_UNIVERSAL_1_2, std::move(module), spvtools::MessageConsumer()); Analysis built_analyses = IRContext::kAnalysisNone; for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { localContext.BuildInvalidAnalyses(i); built_analyses |= i; } EXPECT_TRUE(localContext.AreAnalysesValid(built_analyses)); } TEST_F(IRContextTest, AllValidAfterPassNoChange) { std::unique_ptr module = MakeUnique(); IRContext localContext(SPV_ENV_UNIVERSAL_1_2, std::move(module), spvtools::MessageConsumer()); Analysis built_analyses = IRContext::kAnalysisNone; for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { localContext.BuildInvalidAnalyses(i); built_analyses |= i; } DummyPassPreservesNothing pass(Pass::Status::SuccessWithoutChange); Pass::Status s = pass.Run(&localContext); EXPECT_EQ(s, Pass::Status::SuccessWithoutChange); EXPECT_TRUE(localContext.AreAnalysesValid(built_analyses)); } TEST_F(IRContextTest, NoneValidAfterPassWithChange) { std::unique_ptr module = MakeUnique(); IRContext localContext(SPV_ENV_UNIVERSAL_1_2, std::move(module), spvtools::MessageConsumer()); for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { localContext.BuildInvalidAnalyses(i); } DummyPassPreservesNothing pass(Pass::Status::SuccessWithChange); Pass::Status s = pass.Run(&localContext); EXPECT_EQ(s, Pass::Status::SuccessWithChange); for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { EXPECT_FALSE(localContext.AreAnalysesValid(i)); } } TEST_F(IRContextTest, AllPreservedAfterPassWithChange) { std::unique_ptr module = MakeUnique(); IRContext localContext(SPV_ENV_UNIVERSAL_1_2, std::move(module), spvtools::MessageConsumer()); for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { localContext.BuildInvalidAnalyses(i); } DummyPassPreservesAll pass(Pass::Status::SuccessWithChange); Pass::Status s = pass.Run(&localContext); EXPECT_EQ(s, Pass::Status::SuccessWithChange); for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { EXPECT_TRUE(localContext.AreAnalysesValid(i)); } } TEST_F(IRContextTest, PreserveFirstOnlyAfterPassWithChange) { std::unique_ptr module = MakeUnique(); IRContext localContext(SPV_ENV_UNIVERSAL_1_2, std::move(module), spvtools::MessageConsumer()); for (Analysis i = IRContext::kAnalysisBegin; i < IRContext::kAnalysisEnd; i <<= 1) { localContext.BuildInvalidAnalyses(i); } DummyPassPreservesFirst pass(Pass::Status::SuccessWithChange); Pass::Status s = pass.Run(&localContext); EXPECT_EQ(s, Pass::Status::SuccessWithChange); EXPECT_TRUE(localContext.AreAnalysesValid(IRContext::kAnalysisBegin)); for (Analysis i = IRContext::kAnalysisBegin << 1; i < IRContext::kAnalysisEnd; i <<= 1) { EXPECT_FALSE(localContext.AreAnalysesValid(i)); } } TEST_F(IRContextTest, KillMemberName) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpName %3 "stuff" OpMemberName %3 0 "refZ" OpMemberDecorate %3 0 Offset 0 OpDecorate %3 Block %4 = OpTypeFloat 32 %3 = OpTypeStruct %4 %5 = OpTypeVoid %6 = OpTypeFunction %5 %2 = OpFunction %5 None %6 %7 = OpLabel OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_2, nullptr, text); // Build the decoration manager. context->get_decoration_mgr(); // Delete the OpTypeStruct. Should delete the OpName, OpMemberName, and // OpMemberDecorate associated with it. context->KillDef(3); // Make sure all of the name are removed. for (auto& inst : context->debugs2()) { EXPECT_EQ(inst.opcode(), SpvOpNop); } // Make sure all of the decorations are removed. for (auto& inst : context->annotations()) { EXPECT_EQ(inst.opcode(), SpvOpNop); } } TEST_F(IRContextTest, KillGroupDecoration) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 OpDecorate %3 Restrict %3 = OpDecorationGroup OpGroupDecorate %3 %4 %5 %6 = OpTypeFloat 32 %7 = OpTypePointer Function %6 %8 = OpTypeStruct %6 %9 = OpTypeVoid %10 = OpTypeFunction %9 %2 = OpFunction %9 None %10 %11 = OpLabel %4 = OpVariable %7 Function %5 = OpVariable %7 Function OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_2, nullptr, text); // Build the decoration manager. context->get_decoration_mgr(); // Delete the second variable. context->KillDef(5); // The three decorations instructions should still be there. The first two // should be the same, but the third should have %5 removed. // Check the OpDecorate instruction auto inst = context->annotation_begin(); EXPECT_EQ(inst->opcode(), SpvOpDecorate); EXPECT_EQ(inst->GetSingleWordInOperand(0), 3); // Check the OpDecorationGroup Instruction ++inst; EXPECT_EQ(inst->opcode(), SpvOpDecorationGroup); EXPECT_EQ(inst->result_id(), 3); // Check that %5 is no longer part of the group. ++inst; EXPECT_EQ(inst->opcode(), SpvOpGroupDecorate); EXPECT_EQ(inst->NumInOperands(), 2); EXPECT_EQ(inst->GetSingleWordInOperand(0), 3); EXPECT_EQ(inst->GetSingleWordInOperand(1), 4); // Check that we are at the end. ++inst; EXPECT_EQ(inst, context->annotation_end()); } TEST_F(IRContextTest, TakeNextUniqueIdIncrementing) { const uint32_t NUM_TESTS = 1000; IRContext localContext(SPV_ENV_UNIVERSAL_1_2, nullptr); for (uint32_t i = 1; i < NUM_TESTS; ++i) EXPECT_EQ(i, localContext.TakeNextUniqueId()); } TEST_F(IRContextTest, KillGroupDecorationWitNoDecorations) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 %3 = OpDecorationGroup OpGroupDecorate %3 %4 %5 %6 = OpTypeFloat 32 %7 = OpTypePointer Function %6 %8 = OpTypeStruct %6 %9 = OpTypeVoid %10 = OpTypeFunction %9 %2 = OpFunction %9 None %10 %11 = OpLabel %4 = OpVariable %7 Function %5 = OpVariable %7 Function OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_2, nullptr, text); // Build the decoration manager. context->get_decoration_mgr(); // Delete the second variable. context->KillDef(5); // The two decoration instructions should still be there. The first one // should be the same, but the second should have %5 removed. // Check the OpDecorationGroup Instruction auto inst = context->annotation_begin(); EXPECT_EQ(inst->opcode(), SpvOpDecorationGroup); EXPECT_EQ(inst->result_id(), 3); // Check that %5 is no longer part of the group. ++inst; EXPECT_EQ(inst->opcode(), SpvOpGroupDecorate); EXPECT_EQ(inst->NumInOperands(), 2); EXPECT_EQ(inst->GetSingleWordInOperand(0), 3); EXPECT_EQ(inst->GetSingleWordInOperand(1), 4); // Check that we are at the end. ++inst; EXPECT_EQ(inst, context->annotation_end()); } TEST_F(IRContextTest, KillDecorationGroup) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" OpExecutionMode %2 OriginUpperLeft OpSource GLSL 430 %3 = OpDecorationGroup OpGroupDecorate %3 %4 %5 %6 = OpTypeFloat 32 %7 = OpTypePointer Function %6 %8 = OpTypeStruct %6 %9 = OpTypeVoid %10 = OpTypeFunction %9 %2 = OpFunction %9 None %10 %11 = OpLabel %4 = OpVariable %7 Function %5 = OpVariable %7 Function OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_2, nullptr, text); // Build the decoration manager. context->get_decoration_mgr(); // Delete the second variable. context->KillDef(3); // Check the OpDecorationGroup Instruction is still there. EXPECT_TRUE(context->annotations().empty()); } TEST_F(IRContextTest, KillFunctionFromDebugFunction) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "OpenCL.DebugInfo.100" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" OpExecutionMode %2 OriginUpperLeft %3 = OpString "ps.hlsl" %4 = OpString "foo" OpSource HLSL 600 %void = OpTypeVoid %6 = OpTypeFunction %void %7 = OpExtInst %void %1 DebugSource %3 %8 = OpExtInst %void %1 DebugCompilationUnit 1 4 %7 HLSL %9 = OpExtInst %void %1 DebugTypeFunction FlagIsProtected|FlagIsPrivate %void %10 = OpExtInst %void %1 DebugFunction %4 %9 %7 1 1 %8 %4 FlagIsProtected|FlagIsPrivate 1 %11 %2 = OpFunction %void None %6 %12 = OpLabel OpReturn OpFunctionEnd %11 = OpFunction %void None %6 %13 = OpLabel OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_2, nullptr, text); // Delete the second variable. context->KillDef(11); // Get DebugInfoNone id. uint32_t debug_info_none_id = 0; for (auto it = context->ext_inst_debuginfo_begin(); it != context->ext_inst_debuginfo_end(); ++it) { if (it->GetOpenCL100DebugOpcode() == OpenCLDebugInfo100DebugInfoNone) { debug_info_none_id = it->result_id(); } } EXPECT_NE(0, debug_info_none_id); // Check the Function operand of DebugFunction is DebugInfoNone. const uint32_t kDebugFunctionOperandFunctionIndex = 13; bool checked = false; for (auto it = context->ext_inst_debuginfo_begin(); it != context->ext_inst_debuginfo_end(); ++it) { if (it->GetOpenCL100DebugOpcode() == OpenCLDebugInfo100DebugFunction) { EXPECT_FALSE(checked); EXPECT_EQ(it->GetOperand(kDebugFunctionOperandFunctionIndex).words[0], debug_info_none_id); checked = true; } } EXPECT_TRUE(checked); } TEST_F(IRContextTest, KillVariableFromDebugGlobalVariable) { const std::string text = R"( OpCapability Shader %1 = OpExtInstImport "OpenCL.DebugInfo.100" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %2 "main" OpExecutionMode %2 OriginUpperLeft %3 = OpString "ps.hlsl" %4 = OpString "foo" %5 = OpString "int" OpSource HLSL 600 %uint = OpTypeInt 32 0 %uint_32 = OpConstant %uint 32 %_ptr_Private_uint = OpTypePointer Private %uint %void = OpTypeVoid %10 = OpTypeFunction %void %11 = OpVariable %_ptr_Private_uint Private %12 = OpExtInst %void %1 DebugSource %3 %13 = OpExtInst %void %1 DebugCompilationUnit 1 4 %12 HLSL %14 = OpExtInst %void %1 DebugTypeBasic %5 %uint_32 Signed %15 = OpExtInst %void %1 DebugGlobalVariable %4 %14 %12 1 12 %13 %4 %11 FlagIsDefinition %2 = OpFunction %void None %10 %16 = OpLabel OpReturn OpFunctionEnd )"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_2, nullptr, text); // Delete the second variable. context->KillDef(11); // Get DebugInfoNone id. uint32_t debug_info_none_id = 0; for (auto it = context->ext_inst_debuginfo_begin(); it != context->ext_inst_debuginfo_end(); ++it) { if (it->GetOpenCL100DebugOpcode() == OpenCLDebugInfo100DebugInfoNone) { debug_info_none_id = it->result_id(); } } EXPECT_NE(0, debug_info_none_id); // Check the Function operand of DebugFunction is DebugInfoNone. const uint32_t kDebugGlobalVariableOperandVariableIndex = 11; bool checked = false; for (auto it = context->ext_inst_debuginfo_begin(); it != context->ext_inst_debuginfo_end(); ++it) { if (it->GetOpenCL100DebugOpcode() == OpenCLDebugInfo100DebugGlobalVariable) { EXPECT_FALSE(checked); EXPECT_EQ( it->GetOperand(kDebugGlobalVariableOperandVariableIndex).words[0], debug_info_none_id); checked = true; } } EXPECT_TRUE(checked); } TEST_F(IRContextTest, BasicVisitFromEntryPoint) { // Make sure we visit the entry point, and the function it calls. // Do not visit Dead or Exported. const std::string text = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %10 "main" OpName %10 "main" OpName %Dead "Dead" OpName %11 "Constant" OpName %ExportedFunc "ExportedFunc" OpDecorate %ExportedFunc LinkageAttributes "ExportedFunc" Export %void = OpTypeVoid %6 = OpTypeFunction %void %10 = OpFunction %void None %6 %14 = OpLabel %15 = OpFunctionCall %void %11 %16 = OpFunctionCall %void %11 OpReturn OpFunctionEnd %11 = OpFunction %void None %6 %18 = OpLabel OpReturn OpFunctionEnd %Dead = OpFunction %void None %6 %19 = OpLabel OpReturn OpFunctionEnd %ExportedFunc = OpFunction %void None %7 %20 = OpLabel %21 = OpFunctionCall %void %11 OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr localContext = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); EXPECT_NE(nullptr, localContext) << "Assembling failed for shader:\n" << text << std::endl; std::vector processed; Pass::ProcessFunction mark_visited = [&processed](Function* fp) { processed.push_back(fp->result_id()); return false; }; localContext->ProcessEntryPointCallTree(mark_visited); EXPECT_THAT(processed, UnorderedElementsAre(10, 11)); } TEST_F(IRContextTest, BasicVisitReachable) { // Make sure we visit the entry point, exported function, and the function // they call. Do not visit Dead. const std::string text = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %10 "main" OpName %10 "main" OpName %Dead "Dead" OpName %11 "Constant" OpName %12 "ExportedFunc" OpName %13 "Constant2" OpDecorate %12 LinkageAttributes "ExportedFunc" Export %void = OpTypeVoid %6 = OpTypeFunction %void %10 = OpFunction %void None %6 %14 = OpLabel %15 = OpFunctionCall %void %11 %16 = OpFunctionCall %void %11 OpReturn OpFunctionEnd %11 = OpFunction %void None %6 %18 = OpLabel OpReturn OpFunctionEnd %Dead = OpFunction %void None %6 %19 = OpLabel OpReturn OpFunctionEnd %12 = OpFunction %void None %6 %20 = OpLabel %21 = OpFunctionCall %void %13 OpReturn OpFunctionEnd %13 = OpFunction %void None %6 %22 = OpLabel OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr localContext = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); EXPECT_NE(nullptr, localContext) << "Assembling failed for shader:\n" << text << std::endl; std::vector processed; Pass::ProcessFunction mark_visited = [&processed](Function* fp) { processed.push_back(fp->result_id()); return false; }; localContext->ProcessReachableCallTree(mark_visited); EXPECT_THAT(processed, UnorderedElementsAre(10, 11, 12, 13)); } TEST_F(IRContextTest, BasicVisitOnlyOnce) { // Make sure we visit %12 only once, even if it is called from two different // functions. const std::string text = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %10 "main" OpName %10 "main" OpName %Dead "Dead" OpName %11 "Constant" OpName %12 "ExportedFunc" OpDecorate %12 LinkageAttributes "ExportedFunc" Export %void = OpTypeVoid %6 = OpTypeFunction %void %10 = OpFunction %void None %6 %14 = OpLabel %15 = OpFunctionCall %void %11 %16 = OpFunctionCall %void %12 OpReturn OpFunctionEnd %11 = OpFunction %void None %6 %18 = OpLabel %19 = OpFunctionCall %void %12 OpReturn OpFunctionEnd %Dead = OpFunction %void None %6 %20 = OpLabel OpReturn OpFunctionEnd %12 = OpFunction %void None %6 %21 = OpLabel OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr localContext = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); EXPECT_NE(nullptr, localContext) << "Assembling failed for shader:\n" << text << std::endl; std::vector processed; Pass::ProcessFunction mark_visited = [&processed](Function* fp) { processed.push_back(fp->result_id()); return false; }; localContext->ProcessReachableCallTree(mark_visited); EXPECT_THAT(processed, UnorderedElementsAre(10, 11, 12)); } TEST_F(IRContextTest, BasicDontVisitExportedVariable) { // Make sure we only visit functions and not exported variables. const std::string text = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %10 "main" OpExecutionMode %10 OriginUpperLeft OpSource GLSL 150 OpName %10 "main" OpName %12 "export_var" OpDecorate %12 LinkageAttributes "export_var" Export %void = OpTypeVoid %6 = OpTypeFunction %void %float = OpTypeFloat 32 %float_1 = OpConstant %float 1 %12 = OpVariable %float Output %10 = OpFunction %void None %6 %14 = OpLabel OpStore %12 %float_1 OpReturn OpFunctionEnd )"; // clang-format on std::unique_ptr localContext = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); EXPECT_NE(nullptr, localContext) << "Assembling failed for shader:\n" << text << std::endl; std::vector processed; Pass::ProcessFunction mark_visited = [&processed](Function* fp) { processed.push_back(fp->result_id()); return false; }; localContext->ProcessReachableCallTree(mark_visited); EXPECT_THAT(processed, UnorderedElementsAre(10)); } TEST_F(IRContextTest, IdBoundTestAtLimit) { const std::string text = R"( OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %1 = OpTypeVoid %2 = OpTypeFunction %1 %3 = OpFunction %1 None %2 %4 = OpLabel OpReturn OpFunctionEnd)"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); uint32_t current_bound = context->module()->id_bound(); context->set_max_id_bound(current_bound); uint32_t next_id_bound = context->TakeNextId(); EXPECT_EQ(next_id_bound, 0); EXPECT_EQ(current_bound, context->module()->id_bound()); next_id_bound = context->TakeNextId(); EXPECT_EQ(next_id_bound, 0); } TEST_F(IRContextTest, IdBoundTestBelowLimit) { const std::string text = R"( OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %1 = OpTypeVoid %2 = OpTypeFunction %1 %3 = OpFunction %1 None %2 %4 = OpLabel OpReturn OpFunctionEnd)"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); uint32_t current_bound = context->module()->id_bound(); context->set_max_id_bound(current_bound + 100); uint32_t next_id_bound = context->TakeNextId(); EXPECT_EQ(next_id_bound, current_bound); EXPECT_EQ(current_bound + 1, context->module()->id_bound()); next_id_bound = context->TakeNextId(); EXPECT_EQ(next_id_bound, current_bound + 1); } TEST_F(IRContextTest, IdBoundTestNearLimit) { const std::string text = R"( OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %1 = OpTypeVoid %2 = OpTypeFunction %1 %3 = OpFunction %1 None %2 %4 = OpLabel OpReturn OpFunctionEnd)"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); uint32_t current_bound = context->module()->id_bound(); context->set_max_id_bound(current_bound + 1); uint32_t next_id_bound = context->TakeNextId(); EXPECT_EQ(next_id_bound, current_bound); EXPECT_EQ(current_bound + 1, context->module()->id_bound()); next_id_bound = context->TakeNextId(); EXPECT_EQ(next_id_bound, 0); } TEST_F(IRContextTest, IdBoundTestUIntMax) { const std::string text = R"( OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %1 = OpTypeVoid %2 = OpTypeFunction %1 %3 = OpFunction %1 None %2 %4294967294 = OpLabel ; ID is UINT_MAX-1 OpReturn OpFunctionEnd)"; std::unique_ptr context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); uint32_t current_bound = context->module()->id_bound(); // Expecting |BuildModule| to preserve the numeric ids. EXPECT_EQ(current_bound, std::numeric_limits::max()); context->set_max_id_bound(current_bound); uint32_t next_id_bound = context->TakeNextId(); EXPECT_EQ(next_id_bound, 0); EXPECT_EQ(current_bound, context->module()->id_bound()); } TEST_F(IRContextTest, CfgAndDomAnalysis) { const std::string text = R"( OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %1 = OpTypeVoid %2 = OpTypeFunction %1 %3 = OpFunction %1 None %2 %4 = OpLabel OpReturn OpFunctionEnd)"; std::unique_ptr ctx = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, text, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); // Building the dominator analysis should build the CFG. ASSERT_TRUE(ctx->module()->begin() != ctx->module()->end()); ctx->GetDominatorAnalysis(&*ctx->module()->begin()); EXPECT_TRUE(ctx->AreAnalysesValid(IRContext::kAnalysisCFG)); EXPECT_TRUE(ctx->AreAnalysesValid(IRContext::kAnalysisDominatorAnalysis)); // Invalidating the CFG analysis should invalidate the dominator analysis. ctx->InvalidateAnalyses(IRContext::kAnalysisCFG); EXPECT_FALSE(ctx->AreAnalysesValid(IRContext::kAnalysisCFG)); EXPECT_FALSE(ctx->AreAnalysesValid(IRContext::kAnalysisDominatorAnalysis)); } TEST_F(IRContextTest, AsanErrorTest) { std::string shader = R"( OpCapability Shader %1 = OpExtInstImport "GLSL.std.450" OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %4 "main" OpExecutionMode %4 OriginUpperLeft OpSource ESSL 310 OpName %4 "main" OpName %8 "x" OpName %10 "y" OpDecorate %8 RelaxedPrecision OpDecorate %10 RelaxedPrecision OpDecorate %11 RelaxedPrecision %2 = OpTypeVoid %3 = OpTypeFunction %2 %6 = OpTypeInt 32 1 %7 = OpTypePointer Function %6 %9 = OpConstant %6 1 %4 = OpFunction %2 None %3 %5 = OpLabel %8 = OpVariable %7 Function %10 = OpVariable %7 Function OpStore %8 %9 %11 = OpLoad %6 %8 OpBranch %20 %20 = OpLabel %21 = OpPhi %6 %11 %5 OpStore %10 %21 OpReturn OpFunctionEnd )"; const auto env = SPV_ENV_UNIVERSAL_1_3; const auto consumer = nullptr; const auto context = BuildModule( env, consumer, shader, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); opt::Function* fun = context->cfg()->block(5)->GetParent(); // Computes the CFG analysis opt::DominatorAnalysis* dom = nullptr; dom = context->GetDominatorAnalysis(fun); // Computes the dominator analysis, // which depends on the CFG // analysis context->InvalidateAnalysesExceptFor( opt::IRContext::Analysis::kAnalysisDominatorAnalysis); // Invalidates the // CFG analysis dom = context->GetDominatorAnalysis( fun); // Recompute the CFG analysis because the Dominator tree uses it. auto bb = dom->ImmediateDominator(5); std::cout << bb->id(); // Make sure asan does not complain about use after free. } } // namespace } // namespace opt } // namespace spvtools