// Copyright (c) 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/fuzz/fuzzer_util.h" #include #include #include "source/opt/build_module.h" namespace spvtools { namespace fuzz { namespace fuzzerutil { namespace { uint32_t MaybeGetOpConstant(opt::IRContext* ir_context, const TransformationContext& transformation_context, const std::vector& words, uint32_t type_id, bool is_irrelevant) { for (const auto& inst : ir_context->types_values()) { if (inst.opcode() == SpvOpConstant && inst.type_id() == type_id && inst.GetInOperand(0).words == words && transformation_context.GetFactManager()->IdIsIrrelevant( inst.result_id()) == is_irrelevant) { return inst.result_id(); } } return 0; } } // namespace bool IsFreshId(opt::IRContext* context, uint32_t id) { return !context->get_def_use_mgr()->GetDef(id); } void UpdateModuleIdBound(opt::IRContext* context, uint32_t id) { // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2541) consider the // case where the maximum id bound is reached. context->module()->SetIdBound( std::max(context->module()->id_bound(), id + 1)); } opt::BasicBlock* MaybeFindBlock(opt::IRContext* context, uint32_t maybe_block_id) { auto inst = context->get_def_use_mgr()->GetDef(maybe_block_id); if (inst == nullptr) { // No instruction defining this id was found. return nullptr; } if (inst->opcode() != SpvOpLabel) { // The instruction defining the id is not a label, so it cannot be a block // id. return nullptr; } return context->cfg()->block(maybe_block_id); } bool PhiIdsOkForNewEdge( opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to, const google::protobuf::RepeatedField& phi_ids) { if (bb_from->IsSuccessor(bb_to)) { // There is already an edge from |from_block| to |to_block|, so there is // no need to extend OpPhi instructions. Do not allow phi ids to be // present. This might turn out to be too strict; perhaps it would be OK // just to ignore the ids in this case. return phi_ids.empty(); } // The edge would add a previously non-existent edge from |from_block| to // |to_block|, so we go through the given phi ids and check that they exactly // match the OpPhi instructions in |to_block|. uint32_t phi_index = 0; // An explicit loop, rather than applying a lambda to each OpPhi in |bb_to|, // makes sense here because we need to increment |phi_index| for each OpPhi // instruction. for (auto& inst : *bb_to) { if (inst.opcode() != SpvOpPhi) { // The OpPhi instructions all occur at the start of the block; if we find // a non-OpPhi then we have seen them all. break; } if (phi_index == static_cast(phi_ids.size())) { // Not enough phi ids have been provided to account for the OpPhi // instructions. return false; } // Look for an instruction defining the next phi id. opt::Instruction* phi_extension = context->get_def_use_mgr()->GetDef(phi_ids[phi_index]); if (!phi_extension) { // The id given to extend this OpPhi does not exist. return false; } if (phi_extension->type_id() != inst.type_id()) { // The instruction given to extend this OpPhi either does not have a type // or its type does not match that of the OpPhi. return false; } if (context->get_instr_block(phi_extension)) { // The instruction defining the phi id has an associated block (i.e., it // is not a global value). Check whether its definition dominates the // exit of |from_block|. auto dominator_analysis = context->GetDominatorAnalysis(bb_from->GetParent()); if (!dominator_analysis->Dominates(phi_extension, bb_from->terminator())) { // The given id is no good as its definition does not dominate the exit // of |from_block| return false; } } phi_index++; } // We allow some of the ids provided for extending OpPhi instructions to be // unused. Their presence does no harm, and requiring a perfect match may // make transformations less likely to cleanly apply. return true; } void AddUnreachableEdgeAndUpdateOpPhis( opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to, uint32_t bool_id, const google::protobuf::RepeatedField& phi_ids) { assert(PhiIdsOkForNewEdge(context, bb_from, bb_to, phi_ids) && "Precondition on phi_ids is not satisfied"); assert(bb_from->terminator()->opcode() == SpvOpBranch && "Precondition on terminator of bb_from is not satisfied"); // Get the id of the boolean constant to be used as the condition. auto condition_inst = context->get_def_use_mgr()->GetDef(bool_id); assert(condition_inst && (condition_inst->opcode() == SpvOpConstantTrue || condition_inst->opcode() == SpvOpConstantFalse) && "|bool_id| is invalid"); auto condition_value = condition_inst->opcode() == SpvOpConstantTrue; const bool from_to_edge_already_exists = bb_from->IsSuccessor(bb_to); auto successor = bb_from->terminator()->GetSingleWordInOperand(0); // Add the dead branch, by turning OpBranch into OpBranchConditional, and // ordering the targets depending on whether the given boolean corresponds to // true or false. bb_from->terminator()->SetOpcode(SpvOpBranchConditional); bb_from->terminator()->SetInOperands( {{SPV_OPERAND_TYPE_ID, {bool_id}}, {SPV_OPERAND_TYPE_ID, {condition_value ? successor : bb_to->id()}}, {SPV_OPERAND_TYPE_ID, {condition_value ? bb_to->id() : successor}}}); // Update OpPhi instructions in the target block if this branch adds a // previously non-existent edge from source to target. if (!from_to_edge_already_exists) { uint32_t phi_index = 0; for (auto& inst : *bb_to) { if (inst.opcode() != SpvOpPhi) { break; } assert(phi_index < static_cast(phi_ids.size()) && "There should be at least one phi id per OpPhi instruction."); inst.AddOperand({SPV_OPERAND_TYPE_ID, {phi_ids[phi_index]}}); inst.AddOperand({SPV_OPERAND_TYPE_ID, {bb_from->id()}}); phi_index++; } } } bool BlockIsBackEdge(opt::IRContext* context, uint32_t block_id, uint32_t loop_header_id) { auto block = context->cfg()->block(block_id); auto loop_header = context->cfg()->block(loop_header_id); // |block| and |loop_header| must be defined, |loop_header| must be in fact // loop header and |block| must branch to it. if (!(block && loop_header && loop_header->IsLoopHeader() && block->IsSuccessor(loop_header))) { return false; } // |block_id| must be reachable and be dominated by |loop_header|. opt::DominatorAnalysis* dominator_analysis = context->GetDominatorAnalysis(loop_header->GetParent()); return dominator_analysis->IsReachable(block_id) && dominator_analysis->Dominates(loop_header_id, block_id); } bool BlockIsInLoopContinueConstruct(opt::IRContext* context, uint32_t block_id, uint32_t maybe_loop_header_id) { // We deem a block to be part of a loop's continue construct if the loop's // continue target dominates the block. auto containing_construct_block = context->cfg()->block(maybe_loop_header_id); if (containing_construct_block->IsLoopHeader()) { auto continue_target = containing_construct_block->ContinueBlockId(); if (context->GetDominatorAnalysis(containing_construct_block->GetParent()) ->Dominates(continue_target, block_id)) { return true; } } return false; } opt::BasicBlock::iterator GetIteratorForInstruction( opt::BasicBlock* block, const opt::Instruction* inst) { for (auto inst_it = block->begin(); inst_it != block->end(); ++inst_it) { if (inst == &*inst_it) { return inst_it; } } return block->end(); } bool BlockIsReachableInItsFunction(opt::IRContext* context, opt::BasicBlock* bb) { auto enclosing_function = bb->GetParent(); return context->GetDominatorAnalysis(enclosing_function) ->Dominates(enclosing_function->entry().get(), bb); } bool CanInsertOpcodeBeforeInstruction( SpvOp opcode, const opt::BasicBlock::iterator& instruction_in_block) { if (instruction_in_block->PreviousNode() && (instruction_in_block->PreviousNode()->opcode() == SpvOpLoopMerge || instruction_in_block->PreviousNode()->opcode() == SpvOpSelectionMerge)) { // We cannot insert directly after a merge instruction. return false; } if (opcode != SpvOpVariable && instruction_in_block->opcode() == SpvOpVariable) { // We cannot insert a non-OpVariable instruction directly before a // variable; variables in a function must be contiguous in the entry block. return false; } // We cannot insert a non-OpPhi instruction directly before an OpPhi, because // OpPhi instructions need to be contiguous at the start of a block. return opcode == SpvOpPhi || instruction_in_block->opcode() != SpvOpPhi; } bool CanMakeSynonymOf(opt::IRContext* ir_context, const TransformationContext& transformation_context, opt::Instruction* inst) { if (inst->opcode() == SpvOpSampledImage) { // The SPIR-V data rules say that only very specific instructions may // may consume the result id of an OpSampledImage, and this excludes the // instructions that are used for making synonyms. return false; } if (!inst->HasResultId()) { // We can only make a synonym of an instruction that generates an id. return false; } if (transformation_context.GetFactManager()->IdIsIrrelevant( inst->result_id())) { // An irrelevant id can't be a synonym of anything. return false; } if (!inst->type_id()) { // We can only make a synonym of an instruction that has a type. return false; } auto type_inst = ir_context->get_def_use_mgr()->GetDef(inst->type_id()); if (type_inst->opcode() == SpvOpTypePointer) { switch (inst->opcode()) { case SpvOpConstantNull: case SpvOpUndef: // We disallow making synonyms of null or undefined pointers. This is // to provide the property that if the original shader exhibited no bad // pointer accesses, the transformed shader will not either. return false; default: break; } } // We do not make synonyms of objects that have decorations: if the synonym is // not decorated analogously, using the original object vs. its synonymous // form may not be equivalent. return ir_context->get_decoration_mgr() ->GetDecorationsFor(inst->result_id(), true) .empty(); } bool IsCompositeType(const opt::analysis::Type* type) { return type && (type->AsArray() || type->AsMatrix() || type->AsStruct() || type->AsVector()); } std::vector RepeatedFieldToVector( const google::protobuf::RepeatedField& repeated_field) { std::vector result; for (auto i : repeated_field) { result.push_back(i); } return result; } uint32_t WalkOneCompositeTypeIndex(opt::IRContext* context, uint32_t base_object_type_id, uint32_t index) { auto should_be_composite_type = context->get_def_use_mgr()->GetDef(base_object_type_id); assert(should_be_composite_type && "The type should exist."); switch (should_be_composite_type->opcode()) { case SpvOpTypeArray: { auto array_length = GetArraySize(*should_be_composite_type, context); if (array_length == 0 || index >= array_length) { return 0; } return should_be_composite_type->GetSingleWordInOperand(0); } case SpvOpTypeMatrix: case SpvOpTypeVector: { auto count = should_be_composite_type->GetSingleWordInOperand(1); if (index >= count) { return 0; } return should_be_composite_type->GetSingleWordInOperand(0); } case SpvOpTypeStruct: { if (index >= GetNumberOfStructMembers(*should_be_composite_type)) { return 0; } return should_be_composite_type->GetSingleWordInOperand(index); } default: return 0; } } uint32_t WalkCompositeTypeIndices( opt::IRContext* context, uint32_t base_object_type_id, const google::protobuf::RepeatedField& indices) { uint32_t sub_object_type_id = base_object_type_id; for (auto index : indices) { sub_object_type_id = WalkOneCompositeTypeIndex(context, sub_object_type_id, index); if (!sub_object_type_id) { return 0; } } return sub_object_type_id; } uint32_t GetNumberOfStructMembers( const opt::Instruction& struct_type_instruction) { assert(struct_type_instruction.opcode() == SpvOpTypeStruct && "An OpTypeStruct instruction is required here."); return struct_type_instruction.NumInOperands(); } uint32_t GetArraySize(const opt::Instruction& array_type_instruction, opt::IRContext* context) { auto array_length_constant = context->get_constant_mgr() ->GetConstantFromInst(context->get_def_use_mgr()->GetDef( array_type_instruction.GetSingleWordInOperand(1))) ->AsIntConstant(); if (array_length_constant->words().size() != 1) { return 0; } return array_length_constant->GetU32(); } uint32_t GetBoundForCompositeIndex(const opt::Instruction& composite_type_inst, opt::IRContext* ir_context) { switch (composite_type_inst.opcode()) { case SpvOpTypeArray: return fuzzerutil::GetArraySize(composite_type_inst, ir_context); case SpvOpTypeMatrix: case SpvOpTypeVector: return composite_type_inst.GetSingleWordInOperand(1); case SpvOpTypeStruct: { return fuzzerutil::GetNumberOfStructMembers(composite_type_inst); } case SpvOpTypeRuntimeArray: assert(false && "GetBoundForCompositeIndex should not be invoked with an " "OpTypeRuntimeArray, which does not have a static bound."); return 0; default: assert(false && "Unknown composite type."); return 0; } } bool IsValid(opt::IRContext* context, spv_validator_options validator_options) { std::vector binary; context->module()->ToBinary(&binary, false); SpirvTools tools(context->grammar().target_env()); return tools.Validate(binary.data(), binary.size(), validator_options); } std::unique_ptr CloneIRContext(opt::IRContext* context) { std::vector binary; context->module()->ToBinary(&binary, false); return BuildModule(context->grammar().target_env(), nullptr, binary.data(), binary.size()); } bool IsNonFunctionTypeId(opt::IRContext* ir_context, uint32_t id) { auto type = ir_context->get_type_mgr()->GetType(id); return type && !type->AsFunction(); } bool IsMergeOrContinue(opt::IRContext* ir_context, uint32_t block_id) { bool result = false; ir_context->get_def_use_mgr()->WhileEachUse( block_id, [&result](const opt::Instruction* use_instruction, uint32_t /*unused*/) -> bool { switch (use_instruction->opcode()) { case SpvOpLoopMerge: case SpvOpSelectionMerge: result = true; return false; default: return true; } }); return result; } uint32_t FindFunctionType(opt::IRContext* ir_context, const std::vector& type_ids) { // Look through the existing types for a match. for (auto& type_or_value : ir_context->types_values()) { if (type_or_value.opcode() != SpvOpTypeFunction) { // We are only interested in function types. continue; } if (type_or_value.NumInOperands() != type_ids.size()) { // Not a match: different numbers of arguments. continue; } // Check whether the return type and argument types match. bool input_operands_match = true; for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) { if (type_ids[i] != type_or_value.GetSingleWordInOperand(i)) { input_operands_match = false; break; } } if (input_operands_match) { // Everything matches. return type_or_value.result_id(); } } // No match was found. return 0; } opt::Instruction* GetFunctionType(opt::IRContext* context, const opt::Function* function) { uint32_t type_id = function->DefInst().GetSingleWordInOperand(1); return context->get_def_use_mgr()->GetDef(type_id); } opt::Function* FindFunction(opt::IRContext* ir_context, uint32_t function_id) { for (auto& function : *ir_context->module()) { if (function.result_id() == function_id) { return &function; } } return nullptr; } bool FunctionIsEntryPoint(opt::IRContext* context, uint32_t function_id) { for (auto& entry_point : context->module()->entry_points()) { if (entry_point.GetSingleWordInOperand(1) == function_id) { return true; } } return false; } bool IdIsAvailableAtUse(opt::IRContext* context, opt::Instruction* use_instruction, uint32_t use_input_operand_index, uint32_t id) { auto defining_instruction = context->get_def_use_mgr()->GetDef(id); auto enclosing_function = context->get_instr_block(use_instruction)->GetParent(); // If the id a function parameter, it needs to be associated with the // function containing the use. if (defining_instruction->opcode() == SpvOpFunctionParameter) { return InstructionIsFunctionParameter(defining_instruction, enclosing_function); } if (!context->get_instr_block(id)) { // The id must be at global scope. return true; } if (defining_instruction == use_instruction) { // It is not OK for a definition to use itself. return false; } auto dominator_analysis = context->GetDominatorAnalysis(enclosing_function); if (use_instruction->opcode() == SpvOpPhi) { // In the case where the use is an operand to OpPhi, it is actually the // *parent* block associated with the operand that must be dominated by // the synonym. auto parent_block = use_instruction->GetSingleWordInOperand(use_input_operand_index + 1); return dominator_analysis->Dominates( context->get_instr_block(defining_instruction)->id(), parent_block); } return dominator_analysis->Dominates(defining_instruction, use_instruction); } bool IdIsAvailableBeforeInstruction(opt::IRContext* context, opt::Instruction* instruction, uint32_t id) { auto defining_instruction = context->get_def_use_mgr()->GetDef(id); auto enclosing_function = context->get_instr_block(instruction)->GetParent(); // If the id a function parameter, it needs to be associated with the // function containing the instruction. if (defining_instruction->opcode() == SpvOpFunctionParameter) { return InstructionIsFunctionParameter(defining_instruction, enclosing_function); } if (!context->get_instr_block(id)) { // The id is at global scope. return true; } if (defining_instruction == instruction) { // The instruction is not available right before its own definition. return false; } return context->GetDominatorAnalysis(enclosing_function) ->Dominates(defining_instruction, instruction); } bool InstructionIsFunctionParameter(opt::Instruction* instruction, opt::Function* function) { if (instruction->opcode() != SpvOpFunctionParameter) { return false; } bool found_parameter = false; function->ForEachParam( [instruction, &found_parameter](opt::Instruction* param) { if (param == instruction) { found_parameter = true; } }); return found_parameter; } uint32_t GetTypeId(opt::IRContext* context, uint32_t result_id) { return context->get_def_use_mgr()->GetDef(result_id)->type_id(); } uint32_t GetPointeeTypeIdFromPointerType(opt::Instruction* pointer_type_inst) { assert(pointer_type_inst && pointer_type_inst->opcode() == SpvOpTypePointer && "Precondition: |pointer_type_inst| must be OpTypePointer."); return pointer_type_inst->GetSingleWordInOperand(1); } uint32_t GetPointeeTypeIdFromPointerType(opt::IRContext* context, uint32_t pointer_type_id) { return GetPointeeTypeIdFromPointerType( context->get_def_use_mgr()->GetDef(pointer_type_id)); } SpvStorageClass GetStorageClassFromPointerType( opt::Instruction* pointer_type_inst) { assert(pointer_type_inst && pointer_type_inst->opcode() == SpvOpTypePointer && "Precondition: |pointer_type_inst| must be OpTypePointer."); return static_cast( pointer_type_inst->GetSingleWordInOperand(0)); } SpvStorageClass GetStorageClassFromPointerType(opt::IRContext* context, uint32_t pointer_type_id) { return GetStorageClassFromPointerType( context->get_def_use_mgr()->GetDef(pointer_type_id)); } uint32_t MaybeGetPointerType(opt::IRContext* context, uint32_t pointee_type_id, SpvStorageClass storage_class) { for (auto& inst : context->types_values()) { switch (inst.opcode()) { case SpvOpTypePointer: if (inst.GetSingleWordInOperand(0) == storage_class && inst.GetSingleWordInOperand(1) == pointee_type_id) { return inst.result_id(); } break; default: break; } } return 0; } uint32_t InOperandIndexFromOperandIndex(const opt::Instruction& inst, uint32_t absolute_index) { // Subtract the number of non-input operands from the index return absolute_index - inst.NumOperands() + inst.NumInOperands(); } bool IsNullConstantSupported(const opt::analysis::Type& type) { return type.AsBool() || type.AsInteger() || type.AsFloat() || type.AsMatrix() || type.AsVector() || type.AsArray() || type.AsStruct() || type.AsPointer() || type.AsEvent() || type.AsDeviceEvent() || type.AsReserveId() || type.AsQueue(); } bool GlobalVariablesMustBeDeclaredInEntryPointInterfaces( const opt::IRContext* ir_context) { // TODO(afd): We capture the universal environments for which this requirement // holds. The check should be refined on demand for other target // environments. switch (ir_context->grammar().target_env()) { case SPV_ENV_UNIVERSAL_1_0: case SPV_ENV_UNIVERSAL_1_1: case SPV_ENV_UNIVERSAL_1_2: case SPV_ENV_UNIVERSAL_1_3: return false; default: return true; } } void AddVariableIdToEntryPointInterfaces(opt::IRContext* context, uint32_t id) { if (GlobalVariablesMustBeDeclaredInEntryPointInterfaces(context)) { // Conservatively add this global to the interface of every entry point in // the module. This means that the global is available for other // transformations to use. // // A downside of this is that the global will be in the interface even if it // ends up never being used. // // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3111) revisit // this if a more thorough approach to entry point interfaces is taken. for (auto& entry_point : context->module()->entry_points()) { entry_point.AddOperand({SPV_OPERAND_TYPE_ID, {id}}); } } } void AddGlobalVariable(opt::IRContext* context, uint32_t result_id, uint32_t type_id, SpvStorageClass storage_class, uint32_t initializer_id) { // Check various preconditions. assert(result_id != 0 && "Result id can't be 0"); assert((storage_class == SpvStorageClassPrivate || storage_class == SpvStorageClassWorkgroup) && "Variable's storage class must be either Private or Workgroup"); auto* type_inst = context->get_def_use_mgr()->GetDef(type_id); (void)type_inst; // Variable becomes unused in release mode. assert(type_inst && type_inst->opcode() == SpvOpTypePointer && GetStorageClassFromPointerType(type_inst) == storage_class && "Variable's type is invalid"); if (storage_class == SpvStorageClassWorkgroup) { assert(initializer_id == 0); } if (initializer_id != 0) { const auto* constant_inst = context->get_def_use_mgr()->GetDef(initializer_id); (void)constant_inst; // Variable becomes unused in release mode. assert(constant_inst && spvOpcodeIsConstant(constant_inst->opcode()) && GetPointeeTypeIdFromPointerType(type_inst) == constant_inst->type_id() && "Initializer is invalid"); } opt::Instruction::OperandList operands = { {SPV_OPERAND_TYPE_STORAGE_CLASS, {static_cast(storage_class)}}}; if (initializer_id) { operands.push_back({SPV_OPERAND_TYPE_ID, {initializer_id}}); } context->module()->AddGlobalValue(MakeUnique( context, SpvOpVariable, type_id, result_id, std::move(operands))); AddVariableIdToEntryPointInterfaces(context, result_id); UpdateModuleIdBound(context, result_id); } void AddLocalVariable(opt::IRContext* context, uint32_t result_id, uint32_t type_id, uint32_t function_id, uint32_t initializer_id) { // Check various preconditions. assert(result_id != 0 && "Result id can't be 0"); auto* type_inst = context->get_def_use_mgr()->GetDef(type_id); (void)type_inst; // Variable becomes unused in release mode. assert(type_inst && type_inst->opcode() == SpvOpTypePointer && GetStorageClassFromPointerType(type_inst) == SpvStorageClassFunction && "Variable's type is invalid"); const auto* constant_inst = context->get_def_use_mgr()->GetDef(initializer_id); (void)constant_inst; // Variable becomes unused in release mode. assert(constant_inst && spvOpcodeIsConstant(constant_inst->opcode()) && GetPointeeTypeIdFromPointerType(type_inst) == constant_inst->type_id() && "Initializer is invalid"); auto* function = FindFunction(context, function_id); assert(function && "Function id is invalid"); function->begin()->begin()->InsertBefore(MakeUnique( context, SpvOpVariable, type_id, result_id, opt::Instruction::OperandList{ {SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}}, {SPV_OPERAND_TYPE_ID, {initializer_id}}})); UpdateModuleIdBound(context, result_id); } bool HasDuplicates(const std::vector& arr) { return std::unordered_set(arr.begin(), arr.end()).size() != arr.size(); } bool IsPermutationOfRange(const std::vector& arr, uint32_t lo, uint32_t hi) { if (arr.empty()) { return lo > hi; } if (HasDuplicates(arr)) { return false; } auto min_max = std::minmax_element(arr.begin(), arr.end()); return arr.size() == hi - lo + 1 && *min_max.first == lo && *min_max.second == hi; } std::vector GetParameters(opt::IRContext* ir_context, uint32_t function_id) { auto* function = FindFunction(ir_context, function_id); assert(function && "|function_id| is invalid"); std::vector result; function->ForEachParam( [&result](opt::Instruction* inst) { result.push_back(inst); }); return result; } void RemoveParameter(opt::IRContext* ir_context, uint32_t parameter_id) { auto* function = GetFunctionFromParameterId(ir_context, parameter_id); assert(function && "|parameter_id| is invalid"); assert(!FunctionIsEntryPoint(ir_context, function->result_id()) && "Can't remove parameter from an entry point function"); function->RemoveParameter(parameter_id); // We've just removed parameters from the function and cleared their memory. // Make sure analyses have no dangling pointers. ir_context->InvalidateAnalysesExceptFor( opt::IRContext::Analysis::kAnalysisNone); } std::vector GetCallers(opt::IRContext* ir_context, uint32_t function_id) { assert(FindFunction(ir_context, function_id) && "|function_id| is not a result id of a function"); std::vector result; ir_context->get_def_use_mgr()->ForEachUser( function_id, [&result, function_id](opt::Instruction* inst) { if (inst->opcode() == SpvOpFunctionCall && inst->GetSingleWordInOperand(0) == function_id) { result.push_back(inst); } }); return result; } opt::Function* GetFunctionFromParameterId(opt::IRContext* ir_context, uint32_t param_id) { auto* param_inst = ir_context->get_def_use_mgr()->GetDef(param_id); assert(param_inst && "Parameter id is invalid"); for (auto& function : *ir_context->module()) { if (InstructionIsFunctionParameter(param_inst, &function)) { return &function; } } return nullptr; } uint32_t UpdateFunctionType(opt::IRContext* ir_context, uint32_t function_id, uint32_t new_function_type_result_id, uint32_t return_type_id, const std::vector& parameter_type_ids) { // Check some initial constraints. assert(ir_context->get_type_mgr()->GetType(return_type_id) && "Return type is invalid"); for (auto id : parameter_type_ids) { const auto* type = ir_context->get_type_mgr()->GetType(id); (void)type; // Make compilers happy in release mode. // Parameters can't be OpTypeVoid. assert(type && !type->AsVoid() && "Parameter has invalid type"); } auto* function = FindFunction(ir_context, function_id); assert(function && "|function_id| is invalid"); auto* old_function_type = GetFunctionType(ir_context, function); assert(old_function_type && "Function has invalid type"); std::vector operand_ids = {return_type_id}; operand_ids.insert(operand_ids.end(), parameter_type_ids.begin(), parameter_type_ids.end()); // A trivial case - we change nothing. if (FindFunctionType(ir_context, operand_ids) == old_function_type->result_id()) { return old_function_type->result_id(); } if (ir_context->get_def_use_mgr()->NumUsers(old_function_type) == 1 && FindFunctionType(ir_context, operand_ids) == 0) { // We can change |old_function_type| only if it's used once in the module // and we are certain we won't create a duplicate as a result of the change. // Update |old_function_type| in-place. opt::Instruction::OperandList operands; for (auto id : operand_ids) { operands.push_back({SPV_OPERAND_TYPE_ID, {id}}); } old_function_type->SetInOperands(std::move(operands)); // |operands| may depend on result ids defined below the |old_function_type| // in the module. old_function_type->RemoveFromList(); ir_context->AddType(std::unique_ptr(old_function_type)); return old_function_type->result_id(); } else { // We can't modify the |old_function_type| so we have to either use an // existing one or create a new one. auto type_id = FindOrCreateFunctionType( ir_context, new_function_type_result_id, operand_ids); assert(type_id != old_function_type->result_id() && "We should've handled this case above"); function->DefInst().SetInOperand(1, {type_id}); // DefUseManager hasn't been updated yet, so if the following condition is // true, then |old_function_type| will have no users when this function // returns. We might as well remove it. if (ir_context->get_def_use_mgr()->NumUsers(old_function_type) == 1) { ir_context->KillInst(old_function_type); } return type_id; } } void AddFunctionType(opt::IRContext* ir_context, uint32_t result_id, const std::vector& type_ids) { assert(result_id != 0 && "Result id can't be 0"); assert(!type_ids.empty() && "OpTypeFunction always has at least one operand - function's return " "type"); assert(IsNonFunctionTypeId(ir_context, type_ids[0]) && "Return type must not be a function"); for (size_t i = 1; i < type_ids.size(); ++i) { const auto* param_type = ir_context->get_type_mgr()->GetType(type_ids[i]); (void)param_type; // Make compiler happy in release mode. assert(param_type && !param_type->AsVoid() && !param_type->AsFunction() && "Function parameter can't have a function or void type"); } opt::Instruction::OperandList operands; operands.reserve(type_ids.size()); for (auto id : type_ids) { operands.push_back({SPV_OPERAND_TYPE_ID, {id}}); } ir_context->AddType(MakeUnique( ir_context, SpvOpTypeFunction, 0, result_id, std::move(operands))); UpdateModuleIdBound(ir_context, result_id); } uint32_t FindOrCreateFunctionType(opt::IRContext* ir_context, uint32_t result_id, const std::vector& type_ids) { if (auto existing_id = FindFunctionType(ir_context, type_ids)) { return existing_id; } AddFunctionType(ir_context, result_id, type_ids); return result_id; } uint32_t MaybeGetIntegerType(opt::IRContext* ir_context, uint32_t width, bool is_signed) { opt::analysis::Integer type(width, is_signed); return ir_context->get_type_mgr()->GetId(&type); } uint32_t MaybeGetFloatType(opt::IRContext* ir_context, uint32_t width) { opt::analysis::Float type(width); return ir_context->get_type_mgr()->GetId(&type); } uint32_t MaybeGetBoolType(opt::IRContext* ir_context) { opt::analysis::Bool type; return ir_context->get_type_mgr()->GetId(&type); } uint32_t MaybeGetVectorType(opt::IRContext* ir_context, uint32_t component_type_id, uint32_t element_count) { const auto* component_type = ir_context->get_type_mgr()->GetType(component_type_id); assert(component_type && (component_type->AsInteger() || component_type->AsFloat() || component_type->AsBool()) && "|component_type_id| is invalid"); assert(element_count >= 2 && element_count <= 4 && "Precondition: component count must be in range [2, 4]."); opt::analysis::Vector type(component_type, element_count); return ir_context->get_type_mgr()->GetId(&type); } uint32_t MaybeGetStructType(opt::IRContext* ir_context, const std::vector& component_type_ids) { std::vector component_types; component_types.reserve(component_type_ids.size()); for (auto type_id : component_type_ids) { const auto* component_type = ir_context->get_type_mgr()->GetType(type_id); assert(component_type && !component_type->AsFunction() && "Component type is invalid"); component_types.push_back(component_type); } opt::analysis::Struct type(component_types); return ir_context->get_type_mgr()->GetId(&type); } uint32_t MaybeGetZeroConstant( opt::IRContext* ir_context, const TransformationContext& transformation_context, uint32_t scalar_or_composite_type_id, bool is_irrelevant) { const auto* type = ir_context->get_type_mgr()->GetType(scalar_or_composite_type_id); assert(type && "|scalar_or_composite_type_id| is invalid"); switch (type->kind()) { case opt::analysis::Type::kBool: return MaybeGetBoolConstant(ir_context, transformation_context, false, is_irrelevant); case opt::analysis::Type::kFloat: case opt::analysis::Type::kInteger: { std::vector words = {0}; if ((type->AsInteger() && type->AsInteger()->width() > 32) || (type->AsFloat() && type->AsFloat()->width() > 32)) { words.push_back(0); } return MaybeGetScalarConstant(ir_context, transformation_context, words, scalar_or_composite_type_id, is_irrelevant); } case opt::analysis::Type::kStruct: { std::vector component_ids; for (const auto* component_type : type->AsStruct()->element_types()) { auto component_type_id = ir_context->get_type_mgr()->GetId(component_type); assert(component_type_id && "Component type is invalid"); auto component_id = MaybeGetZeroConstant(ir_context, transformation_context, component_type_id, is_irrelevant); if (component_id == 0 && is_irrelevant) { // Irrelevant constants can use either relevant or irrelevant // constituents. component_id = MaybeGetZeroConstant( ir_context, transformation_context, component_type_id, false); } if (component_id == 0) { return 0; } component_ids.push_back(component_id); } return MaybeGetCompositeConstant( ir_context, transformation_context, component_ids, scalar_or_composite_type_id, is_irrelevant); } case opt::analysis::Type::kMatrix: case opt::analysis::Type::kVector: { const auto* component_type = type->AsVector() ? type->AsVector()->element_type() : type->AsMatrix()->element_type(); auto component_type_id = ir_context->get_type_mgr()->GetId(component_type); assert(component_type_id && "Component type is invalid"); auto component_id = MaybeGetZeroConstant( ir_context, transformation_context, component_type_id, is_irrelevant); if (component_id == 0 && is_irrelevant) { // Irrelevant constants can use either relevant or irrelevant // constituents. component_id = MaybeGetZeroConstant(ir_context, transformation_context, component_type_id, false); } if (component_id == 0) { return 0; } auto component_count = type->AsVector() ? type->AsVector()->element_count() : type->AsMatrix()->element_count(); return MaybeGetCompositeConstant( ir_context, transformation_context, std::vector(component_count, component_id), scalar_or_composite_type_id, is_irrelevant); } case opt::analysis::Type::kArray: { auto component_type_id = ir_context->get_type_mgr()->GetId(type->AsArray()->element_type()); assert(component_type_id && "Component type is invalid"); auto component_id = MaybeGetZeroConstant( ir_context, transformation_context, component_type_id, is_irrelevant); if (component_id == 0 && is_irrelevant) { component_id = MaybeGetZeroConstant(ir_context, transformation_context, component_type_id, false); } if (component_id == 0) { return 0; } auto type_id = ir_context->get_type_mgr()->GetId(type); assert(type_id && "|type| is invalid"); const auto* type_inst = ir_context->get_def_use_mgr()->GetDef(type_id); assert(type_inst && "Array's type id is invalid"); return MaybeGetCompositeConstant( ir_context, transformation_context, std::vector(GetArraySize(*type_inst, ir_context), component_id), scalar_or_composite_type_id, is_irrelevant); } default: assert(false && "Type is not supported"); return 0; } } uint32_t MaybeGetScalarConstant( opt::IRContext* ir_context, const TransformationContext& transformation_context, const std::vector& words, uint32_t scalar_type_id, bool is_irrelevant) { const auto* type = ir_context->get_type_mgr()->GetType(scalar_type_id); assert(type && "|scalar_type_id| is invalid"); if (const auto* int_type = type->AsInteger()) { return MaybeGetIntegerConstant(ir_context, transformation_context, words, int_type->width(), int_type->IsSigned(), is_irrelevant); } else if (const auto* float_type = type->AsFloat()) { return MaybeGetFloatConstant(ir_context, transformation_context, words, float_type->width(), is_irrelevant); } else { assert(type->AsBool() && words.size() == 1 && "|scalar_type_id| doesn't represent a scalar type"); return MaybeGetBoolConstant(ir_context, transformation_context, words[0], is_irrelevant); } } uint32_t MaybeGetCompositeConstant( opt::IRContext* ir_context, const TransformationContext& transformation_context, const std::vector& component_ids, uint32_t composite_type_id, bool is_irrelevant) { const auto* type = ir_context->get_type_mgr()->GetType(composite_type_id); (void)type; // Make compilers happy in release mode. assert(type && (type->AsArray() || type->AsStruct() || type->AsVector() || type->AsMatrix()) && "|composite_type_id| is invalid"); for (const auto& inst : ir_context->types_values()) { if (inst.opcode() == SpvOpConstantComposite && inst.type_id() == composite_type_id && transformation_context.GetFactManager()->IdIsIrrelevant( inst.result_id()) == is_irrelevant && inst.NumInOperands() == component_ids.size()) { bool is_match = true; for (uint32_t i = 0; i < inst.NumInOperands(); ++i) { if (inst.GetSingleWordInOperand(i) != component_ids[i]) { is_match = false; break; } } if (is_match) { return inst.result_id(); } } } return 0; } uint32_t MaybeGetIntegerConstant( opt::IRContext* ir_context, const TransformationContext& transformation_context, const std::vector& words, uint32_t width, bool is_signed, bool is_irrelevant) { if (auto type_id = MaybeGetIntegerType(ir_context, width, is_signed)) { return MaybeGetOpConstant(ir_context, transformation_context, words, type_id, is_irrelevant); } return 0; } uint32_t MaybeGetIntegerConstantFromValueAndType(opt::IRContext* ir_context, uint32_t value, uint32_t int_type_id) { auto int_type_inst = ir_context->get_def_use_mgr()->GetDef(int_type_id); assert(int_type_inst && "The given type id must exist."); auto int_type = ir_context->get_type_mgr() ->GetType(int_type_inst->result_id()) ->AsInteger(); assert(int_type && int_type->width() == 32 && "The given type id must correspond to an 32-bit integer type."); opt::analysis::IntConstant constant(int_type, {value}); // Check that the constant exists in the module. if (!ir_context->get_constant_mgr()->FindConstant(&constant)) { return 0; } return ir_context->get_constant_mgr() ->GetDefiningInstruction(&constant) ->result_id(); } uint32_t MaybeGetFloatConstant( opt::IRContext* ir_context, const TransformationContext& transformation_context, const std::vector& words, uint32_t width, bool is_irrelevant) { if (auto type_id = MaybeGetFloatType(ir_context, width)) { return MaybeGetOpConstant(ir_context, transformation_context, words, type_id, is_irrelevant); } return 0; } uint32_t MaybeGetBoolConstant( opt::IRContext* ir_context, const TransformationContext& transformation_context, bool value, bool is_irrelevant) { if (auto type_id = MaybeGetBoolType(ir_context)) { for (const auto& inst : ir_context->types_values()) { if (inst.opcode() == (value ? SpvOpConstantTrue : SpvOpConstantFalse) && inst.type_id() == type_id && transformation_context.GetFactManager()->IdIsIrrelevant( inst.result_id()) == is_irrelevant) { return inst.result_id(); } } } return 0; } void AddIntegerType(opt::IRContext* ir_context, uint32_t result_id, uint32_t width, bool is_signed) { ir_context->module()->AddType(MakeUnique( ir_context, SpvOpTypeInt, 0, result_id, opt::Instruction::OperandList{ {SPV_OPERAND_TYPE_LITERAL_INTEGER, {width}}, {SPV_OPERAND_TYPE_LITERAL_INTEGER, {is_signed ? 1u : 0u}}})); UpdateModuleIdBound(ir_context, result_id); } void AddFloatType(opt::IRContext* ir_context, uint32_t result_id, uint32_t width) { ir_context->module()->AddType(MakeUnique( ir_context, SpvOpTypeFloat, 0, result_id, opt::Instruction::OperandList{ {SPV_OPERAND_TYPE_LITERAL_INTEGER, {width}}})); UpdateModuleIdBound(ir_context, result_id); } void AddVectorType(opt::IRContext* ir_context, uint32_t result_id, uint32_t component_type_id, uint32_t element_count) { const auto* component_type = ir_context->get_type_mgr()->GetType(component_type_id); (void)component_type; // Make compiler happy in release mode. assert(component_type && (component_type->AsInteger() || component_type->AsFloat() || component_type->AsBool()) && "|component_type_id| is invalid"); assert(element_count >= 2 && element_count <= 4 && "Precondition: component count must be in range [2, 4]."); ir_context->module()->AddType(MakeUnique( ir_context, SpvOpTypeVector, 0, result_id, opt::Instruction::OperandList{ {SPV_OPERAND_TYPE_ID, {component_type_id}}, {SPV_OPERAND_TYPE_LITERAL_INTEGER, {element_count}}})); UpdateModuleIdBound(ir_context, result_id); } void AddStructType(opt::IRContext* ir_context, uint32_t result_id, const std::vector& component_type_ids) { opt::Instruction::OperandList operands; operands.reserve(component_type_ids.size()); for (auto type_id : component_type_ids) { const auto* type = ir_context->get_type_mgr()->GetType(type_id); (void)type; // Make compiler happy in release mode. assert(type && !type->AsFunction() && "Component's type id is invalid"); operands.push_back({SPV_OPERAND_TYPE_ID, {type_id}}); } ir_context->AddType(MakeUnique( ir_context, SpvOpTypeStruct, 0, result_id, std::move(operands))); UpdateModuleIdBound(ir_context, result_id); } bool TypesAreEqualUpToSign(opt::IRContext* ir_context, uint32_t type1_id, uint32_t type2_id) { if (type1_id == type2_id) { return true; } auto type1 = ir_context->get_type_mgr()->GetType(type1_id); auto type2 = ir_context->get_type_mgr()->GetType(type2_id); // Integer scalar types must have the same width if (type1->AsInteger() && type2->AsInteger()) { return type1->AsInteger()->width() == type2->AsInteger()->width(); } // Integer vector types must have the same number of components and their // component types must be integers with the same width. if (type1->AsVector() && type2->AsVector()) { auto component_type1 = type1->AsVector()->element_type()->AsInteger(); auto component_type2 = type2->AsVector()->element_type()->AsInteger(); // Only check the component count and width if they are integer. if (component_type1 && component_type2) { return type1->AsVector()->element_count() == type2->AsVector()->element_count() && component_type1->width() == component_type2->width(); } } // In all other cases, the types cannot be considered equal. return false; } std::map RepeatedUInt32PairToMap( const google::protobuf::RepeatedPtrField& data) { std::map result; for (const auto& entry : data) { result[entry.first()] = entry.second(); } return result; } google::protobuf::RepeatedPtrField MapToRepeatedUInt32Pair(const std::map& data) { google::protobuf::RepeatedPtrField result; for (const auto& entry : data) { protobufs::UInt32Pair pair; pair.set_first(entry.first); pair.set_second(entry.second); *result.Add() = std::move(pair); } return result; } opt::Instruction* GetLastInsertBeforeInstruction(opt::IRContext* ir_context, uint32_t block_id, SpvOp opcode) { // CFG::block uses std::map::at which throws an exception when |block_id| is // invalid. The error message is unhelpful, though. Thus, we test that // |block_id| is valid here. const auto* label_inst = ir_context->get_def_use_mgr()->GetDef(block_id); (void)label_inst; // Make compilers happy in release mode. assert(label_inst && label_inst->opcode() == SpvOpLabel && "|block_id| is invalid"); auto* block = ir_context->cfg()->block(block_id); auto it = block->rbegin(); assert(it != block->rend() && "Basic block can't be empty"); if (block->GetMergeInst()) { ++it; assert(it != block->rend() && "|block| must have at least two instructions:" "terminator and a merge instruction"); } return CanInsertOpcodeBeforeInstruction(opcode, &*it) ? &*it : nullptr; } } // namespace fuzzerutil } // namespace fuzz } // namespace spvtools