// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "unit_spirv.h" #include #include "gmock/gmock.h" #include "source/spirv_constant.h" #include "test_fixture.h" namespace { using spvtest::AutoText; using spvtest::ScopedContext; using spvtest::TextToBinaryTest; using std::get; using std::tuple; using ::testing::Combine; using ::testing::Eq; using ::testing::HasSubstr; class BinaryToText : public ::testing::Test { public: BinaryToText() : context(spvContextCreate(SPV_ENV_UNIVERSAL_1_0)) {} ~BinaryToText() { spvContextDestroy(context); } virtual void SetUp() { const char* textStr = R"( OpSource OpenCL_C 12 OpMemoryModel Physical64 OpenCL OpSourceExtension "PlaceholderExtensionName" OpEntryPoint Kernel %1 "foo" OpExecutionMode %1 LocalSizeHint 1 1 1 %2 = OpTypeVoid %3 = OpTypeBool %4 = OpTypeInt 8 0 %5 = OpTypeInt 8 1 %6 = OpTypeInt 16 0 %7 = OpTypeInt 16 1 %8 = OpTypeInt 32 0 %9 = OpTypeInt 32 1 %10 = OpTypeInt 64 0 %11 = OpTypeInt 64 1 %12 = OpTypeFloat 16 %13 = OpTypeFloat 32 %14 = OpTypeFloat 64 %15 = OpTypeVector %4 2 )"; spv_text_t text = {textStr, strlen(textStr)}; spv_diagnostic diagnostic = nullptr; spv_result_t error = spvTextToBinary(context, text.str, text.length, &binary, &diagnostic); if (error) { spvDiagnosticPrint(diagnostic); spvDiagnosticDestroy(diagnostic); ASSERT_EQ(SPV_SUCCESS, error); } } virtual void TearDown() { spvBinaryDestroy(binary); } // Compiles the given assembly text, and saves it into 'binary'. void CompileSuccessfully(std::string text) { spv_diagnostic diagnostic = nullptr; EXPECT_EQ(SPV_SUCCESS, spvTextToBinary(context, text.c_str(), text.size(), &binary, &diagnostic)); } spv_context context; spv_binary binary; }; TEST_F(BinaryToText, Default) { spv_text text = nullptr; spv_diagnostic diagnostic = nullptr; ASSERT_EQ( SPV_SUCCESS, spvBinaryToText(context, binary->code, binary->wordCount, SPV_BINARY_TO_TEXT_OPTION_NONE, &text, &diagnostic)); printf("%s", text->str); spvTextDestroy(text); } TEST_F(BinaryToText, MissingModule) { spv_text text; spv_diagnostic diagnostic = nullptr; EXPECT_EQ( SPV_ERROR_INVALID_BINARY, spvBinaryToText(context, nullptr, 42, SPV_BINARY_TO_TEXT_OPTION_NONE, &text, &diagnostic)); EXPECT_THAT(diagnostic->error, Eq(std::string("Missing module."))); if (diagnostic) { spvDiagnosticPrint(diagnostic); spvDiagnosticDestroy(diagnostic); } } TEST_F(BinaryToText, TruncatedModule) { // Make a valid module with zero instructions. CompileSuccessfully(""); EXPECT_EQ(SPV_INDEX_INSTRUCTION, binary->wordCount); for (size_t length = 0; length < SPV_INDEX_INSTRUCTION; length++) { spv_text text = nullptr; spv_diagnostic diagnostic = nullptr; EXPECT_EQ( SPV_ERROR_INVALID_BINARY, spvBinaryToText(context, binary->code, length, SPV_BINARY_TO_TEXT_OPTION_NONE, &text, &diagnostic)); ASSERT_NE(nullptr, diagnostic); std::stringstream expected; expected << "Module has incomplete header: only " << length << " words instead of " << SPV_INDEX_INSTRUCTION; EXPECT_THAT(diagnostic->error, Eq(expected.str())); spvDiagnosticDestroy(diagnostic); } } TEST_F(BinaryToText, InvalidMagicNumber) { CompileSuccessfully(""); std::vector damaged_binary(binary->code, binary->code + binary->wordCount); damaged_binary[SPV_INDEX_MAGIC_NUMBER] ^= 123; spv_diagnostic diagnostic = nullptr; spv_text text; EXPECT_EQ( SPV_ERROR_INVALID_BINARY, spvBinaryToText(context, damaged_binary.data(), damaged_binary.size(), SPV_BINARY_TO_TEXT_OPTION_NONE, &text, &diagnostic)); ASSERT_NE(nullptr, diagnostic); std::stringstream expected; expected << "Invalid SPIR-V magic number '" << std::hex << damaged_binary[SPV_INDEX_MAGIC_NUMBER] << "'."; EXPECT_THAT(diagnostic->error, Eq(expected.str())); spvDiagnosticDestroy(diagnostic); } struct FailedDecodeCase { std::string source_text; std::vector appended_instruction; std::string expected_error_message; }; using BinaryToTextFail = spvtest::TextToBinaryTestBase<::testing::TestWithParam>; TEST_P(BinaryToTextFail, EncodeSuccessfullyDecodeFailed) { EXPECT_THAT(EncodeSuccessfullyDecodeFailed(GetParam().source_text, GetParam().appended_instruction), Eq(GetParam().expected_error_message)); } INSTANTIATE_TEST_CASE_P( InvalidIds, BinaryToTextFail, ::testing::ValuesIn(std::vector{ {"", spvtest::MakeInstruction(SpvOpTypeVoid, {0}), "Error: Result Id is 0"}, {"", spvtest::MakeInstruction(SpvOpConstant, {0, 1, 42}), "Error: Type Id is 0"}, {"%1 = OpTypeVoid", spvtest::MakeInstruction(SpvOpTypeVoid, {1}), "Id 1 is defined more than once"}, {"%1 = OpTypeVoid\n" "%2 = OpNot %1 %foo", spvtest::MakeInstruction(SpvOpNot, {1, 2, 3}), "Id 2 is defined more than once"}, {"%1 = OpTypeVoid\n" "%2 = OpNot %1 %foo", spvtest::MakeInstruction(SpvOpNot, {1, 1, 3}), "Id 1 is defined more than once"}, // The following are the two failure cases for // Parser::setNumericTypeInfoForType. {"", spvtest::MakeInstruction(SpvOpConstant, {500, 1, 42}), "Type Id 500 is not a type"}, {"%1 = OpTypeInt 32 0\n" "%2 = OpTypeVector %1 4", spvtest::MakeInstruction(SpvOpConstant, {2, 3, 999}), "Type Id 2 is not a scalar numeric type"}, }), ); INSTANTIATE_TEST_CASE_P( InvalidIdsCheckedDuringLiteralCaseParsing, BinaryToTextFail, ::testing::ValuesIn(std::vector{ {"", spvtest::MakeInstruction(SpvOpSwitch, {1, 2, 3, 4}), "Invalid OpSwitch: selector id 1 has no type"}, {"%1 = OpTypeVoid\n", spvtest::MakeInstruction(SpvOpSwitch, {1, 2, 3, 4}), "Invalid OpSwitch: selector id 1 is a type, not a value"}, {"%1 = OpConstantTrue !500", spvtest::MakeInstruction(SpvOpSwitch, {1, 2, 3, 4}), "Type Id 500 is not a type"}, {"%1 = OpTypeFloat 32\n%2 = OpConstant %1 1.5", spvtest::MakeInstruction(SpvOpSwitch, {2, 3, 4, 5}), "Invalid OpSwitch: selector id 2 is not a scalar integer"}, }), ); TEST_F(TextToBinaryTest, OneInstruction) { const std::string input = "OpSource OpenCL_C 12\n"; EXPECT_EQ(input, EncodeAndDecodeSuccessfully(input)); } // Exercise the case where an operand itself has operands. // This could detect problems in updating the expected-set-of-operands // list. TEST_F(TextToBinaryTest, OperandWithOperands) { const std::string input = R"(OpEntryPoint Kernel %1 "foo" OpExecutionMode %1 LocalSizeHint 100 200 300 %2 = OpTypeVoid %3 = OpTypeFunction %2 %1 = OpFunction %1 None %3 )"; EXPECT_EQ(input, EncodeAndDecodeSuccessfully(input)); } using RoundTripInstructionsTest = spvtest::TextToBinaryTestBase< ::testing::TestWithParam>>; TEST_P(RoundTripInstructionsTest, Sample) { EXPECT_THAT(EncodeAndDecodeSuccessfully(get<1>(GetParam()), SPV_BINARY_TO_TEXT_OPTION_NONE, get<0>(GetParam())), Eq(get<1>(GetParam()))); } // clang-format off INSTANTIATE_TEST_CASE_P( NumericLiterals, RoundTripInstructionsTest, // This test is independent of environment, so just test the one. Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_0, SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "%1 = OpTypeInt 12 0\n%2 = OpConstant %1 1867\n", "%1 = OpTypeInt 12 1\n%2 = OpConstant %1 1867\n", "%1 = OpTypeInt 12 1\n%2 = OpConstant %1 -1867\n", "%1 = OpTypeInt 32 0\n%2 = OpConstant %1 1867\n", "%1 = OpTypeInt 32 1\n%2 = OpConstant %1 1867\n", "%1 = OpTypeInt 32 1\n%2 = OpConstant %1 -1867\n", "%1 = OpTypeInt 64 0\n%2 = OpConstant %1 18446744073709551615\n", "%1 = OpTypeInt 64 1\n%2 = OpConstant %1 9223372036854775807\n", "%1 = OpTypeInt 64 1\n%2 = OpConstant %1 -9223372036854775808\n", // 16-bit floats print as hex floats. "%1 = OpTypeFloat 16\n%2 = OpConstant %1 0x1.ff4p+16\n", "%1 = OpTypeFloat 16\n%2 = OpConstant %1 -0x1.d2cp-10\n", // 32-bit floats "%1 = OpTypeFloat 32\n%2 = OpConstant %1 -3.275\n", "%1 = OpTypeFloat 32\n%2 = OpConstant %1 0x1.8p+128\n", // NaN "%1 = OpTypeFloat 32\n%2 = OpConstant %1 -0x1.0002p+128\n", // NaN "%1 = OpTypeFloat 32\n%2 = OpConstant %1 0x1p+128\n", // Inf "%1 = OpTypeFloat 32\n%2 = OpConstant %1 -0x1p+128\n", // -Inf // 64-bit floats "%1 = OpTypeFloat 64\n%2 = OpConstant %1 -3.275\n", "%1 = OpTypeFloat 64\n%2 = OpConstant %1 0x1.ffffffffffffap-1023\n", // small normal "%1 = OpTypeFloat 64\n%2 = OpConstant %1 -0x1.ffffffffffffap-1023\n", "%1 = OpTypeFloat 64\n%2 = OpConstant %1 0x1.8p+1024\n", // NaN "%1 = OpTypeFloat 64\n%2 = OpConstant %1 -0x1.0002p+1024\n", // NaN "%1 = OpTypeFloat 64\n%2 = OpConstant %1 0x1p+1024\n", // Inf "%1 = OpTypeFloat 64\n%2 = OpConstant %1 -0x1p+1024\n", // -Inf })), ); // clang-format on INSTANTIATE_TEST_CASE_P( MemoryAccessMasks, RoundTripInstructionsTest, Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_0, SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "OpStore %1 %2\n", // 3 words long. "OpStore %1 %2 None\n", // 4 words long, explicit final 0. "OpStore %1 %2 Volatile\n", "OpStore %1 %2 Aligned 8\n", "OpStore %1 %2 Nontemporal\n", // Combinations show the names from LSB to MSB "OpStore %1 %2 Volatile|Aligned 16\n", "OpStore %1 %2 Volatile|Nontemporal\n", "OpStore %1 %2 Volatile|Aligned|Nontemporal 32\n", })), ); INSTANTIATE_TEST_CASE_P( FPFastMathModeMasks, RoundTripInstructionsTest, Combine( ::testing::Values(SPV_ENV_UNIVERSAL_1_0, SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "OpDecorate %1 FPFastMathMode None\n", "OpDecorate %1 FPFastMathMode NotNaN\n", "OpDecorate %1 FPFastMathMode NotInf\n", "OpDecorate %1 FPFastMathMode NSZ\n", "OpDecorate %1 FPFastMathMode AllowRecip\n", "OpDecorate %1 FPFastMathMode Fast\n", // Combinations show the names from LSB to MSB "OpDecorate %1 FPFastMathMode NotNaN|NotInf\n", "OpDecorate %1 FPFastMathMode NSZ|AllowRecip\n", "OpDecorate %1 FPFastMathMode NotNaN|NotInf|NSZ|AllowRecip|Fast\n", })), ); INSTANTIATE_TEST_CASE_P(LoopControlMasks, RoundTripInstructionsTest, Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_0, SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "OpLoopMerge %1 %2 None\n", "OpLoopMerge %1 %2 Unroll\n", "OpLoopMerge %1 %2 DontUnroll\n", "OpLoopMerge %1 %2 Unroll|DontUnroll\n", })), ); INSTANTIATE_TEST_CASE_P(LoopControlMasksV11, RoundTripInstructionsTest, Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "OpLoopMerge %1 %2 DependencyInfinite\n", "OpLoopMerge %1 %2 DependencyLength 8\n", })), ); INSTANTIATE_TEST_CASE_P(SelectionControlMasks, RoundTripInstructionsTest, Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_0, SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "OpSelectionMerge %1 None\n", "OpSelectionMerge %1 Flatten\n", "OpSelectionMerge %1 DontFlatten\n", "OpSelectionMerge %1 Flatten|DontFlatten\n", })), ); INSTANTIATE_TEST_CASE_P(FunctionControlMasks, RoundTripInstructionsTest, Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_0, SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "%2 = OpFunction %1 None %3\n", "%2 = OpFunction %1 Inline %3\n", "%2 = OpFunction %1 DontInline %3\n", "%2 = OpFunction %1 Pure %3\n", "%2 = OpFunction %1 Const %3\n", "%2 = OpFunction %1 Inline|Pure|Const %3\n", "%2 = OpFunction %1 DontInline|Const %3\n", })), ); INSTANTIATE_TEST_CASE_P( ImageMasks, RoundTripInstructionsTest, Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_0, SPV_ENV_UNIVERSAL_1_1, SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "%2 = OpImageFetch %1 %3 %4\n", "%2 = OpImageFetch %1 %3 %4 None\n", "%2 = OpImageFetch %1 %3 %4 Bias %5\n", "%2 = OpImageFetch %1 %3 %4 Lod %5\n", "%2 = OpImageFetch %1 %3 %4 Grad %5 %6\n", "%2 = OpImageFetch %1 %3 %4 ConstOffset %5\n", "%2 = OpImageFetch %1 %3 %4 Offset %5\n", "%2 = OpImageFetch %1 %3 %4 ConstOffsets %5\n", "%2 = OpImageFetch %1 %3 %4 Sample %5\n", "%2 = OpImageFetch %1 %3 %4 MinLod %5\n", "%2 = OpImageFetch %1 %3 %4 Bias|Lod|Grad %5 %6 %7 %8\n", "%2 = OpImageFetch %1 %3 %4 ConstOffset|Offset|ConstOffsets" " %5 %6 %7\n", "%2 = OpImageFetch %1 %3 %4 Sample|MinLod %5 %6\n", "%2 = OpImageFetch %1 %3 %4" " Bias|Lod|Grad|ConstOffset|Offset|ConstOffsets|Sample|MinLod" " %5 %6 %7 %8 %9 %10 %11 %12 %13\n"})), ); INSTANTIATE_TEST_CASE_P( NewInstructionsInSPIRV1_2, RoundTripInstructionsTest, Combine(::testing::Values(SPV_ENV_UNIVERSAL_1_2), ::testing::ValuesIn(std::vector{ "OpExecutionModeId %1 SubgroupsPerWorkgroupId %2\n", "OpExecutionModeId %1 LocalSizeId %2 %3 %4\n", "OpExecutionModeId %1 LocalSizeHintId %2\n", "OpDecorateId %1 AlignmentId %2\n", "OpDecorateId %1 MaxByteOffsetId %2\n", })), ); using MaskSorting = TextToBinaryTest; TEST_F(MaskSorting, MasksAreSortedFromLSBToMSB) { EXPECT_THAT(EncodeAndDecodeSuccessfully( "OpStore %1 %2 Nontemporal|Aligned|Volatile 32"), Eq("OpStore %1 %2 Volatile|Aligned|Nontemporal 32\n")); EXPECT_THAT( EncodeAndDecodeSuccessfully( "OpDecorate %1 FPFastMathMode NotInf|Fast|AllowRecip|NotNaN|NSZ"), Eq("OpDecorate %1 FPFastMathMode NotNaN|NotInf|NSZ|AllowRecip|Fast\n")); EXPECT_THAT( EncodeAndDecodeSuccessfully("OpLoopMerge %1 %2 DontUnroll|Unroll"), Eq("OpLoopMerge %1 %2 Unroll|DontUnroll\n")); EXPECT_THAT( EncodeAndDecodeSuccessfully("OpSelectionMerge %1 DontFlatten|Flatten"), Eq("OpSelectionMerge %1 Flatten|DontFlatten\n")); EXPECT_THAT(EncodeAndDecodeSuccessfully( "%2 = OpFunction %1 DontInline|Const|Pure|Inline %3"), Eq("%2 = OpFunction %1 Inline|DontInline|Pure|Const %3\n")); EXPECT_THAT(EncodeAndDecodeSuccessfully( "%2 = OpImageFetch %1 %3 %4" " MinLod|Sample|Offset|Lod|Grad|ConstOffsets|ConstOffset|Bias" " %5 %6 %7 %8 %9 %10 %11 %12 %13\n"), Eq("%2 = OpImageFetch %1 %3 %4" " Bias|Lod|Grad|ConstOffset|Offset|ConstOffsets|Sample|MinLod" " %5 %6 %7 %8 %9 %10 %11 %12 %13\n")); } using OperandTypeTest = TextToBinaryTest; TEST_F(OperandTypeTest, OptionalTypedLiteralNumber) { const std::string input = "%1 = OpTypeInt 32 0\n" "%2 = OpConstant %1 42\n" "OpSwitch %2 %3 100 %4\n"; EXPECT_EQ(input, EncodeAndDecodeSuccessfully(input)); } using IndentTest = spvtest::TextToBinaryTest; TEST_F(IndentTest, Sample) { const std::string input = R"( OpCapability Shader OpMemoryModel Logical GLSL450 %1 = OpTypeInt 32 0 %2 = OpTypeStruct %1 %3 %4 %5 %6 %7 %8 %9 %10 ; force IDs into double digits %11 = OpConstant %1 42 OpStore %2 %3 Aligned|Volatile 4 ; bogus, but not indented )"; const std::string expected = R"( OpCapability Shader OpMemoryModel Logical GLSL450 %1 = OpTypeInt 32 0 %2 = OpTypeStruct %1 %3 %4 %5 %6 %7 %8 %9 %10 %11 = OpConstant %1 42 OpStore %2 %3 Volatile|Aligned 4 )"; EXPECT_THAT( EncodeAndDecodeSuccessfully(input, SPV_BINARY_TO_TEXT_OPTION_INDENT), expected); } using FriendlyNameDisassemblyTest = spvtest::TextToBinaryTest; TEST_F(FriendlyNameDisassemblyTest, Sample) { const std::string input = R"( OpCapability Shader OpMemoryModel Logical GLSL450 %1 = OpTypeInt 32 0 %2 = OpTypeStruct %1 %3 %4 %5 %6 %7 %8 %9 %10 ; force IDs into double digits %11 = OpConstant %1 42 )"; const std::string expected = R"(OpCapability Shader OpMemoryModel Logical GLSL450 %uint = OpTypeInt 32 0 %_struct_2 = OpTypeStruct %uint %3 %4 %5 %6 %7 %8 %9 %10 %uint_42 = OpConstant %uint 42 )"; EXPECT_THAT(EncodeAndDecodeSuccessfully( input, SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES), expected); } TEST_F(TextToBinaryTest, ShowByteOffsetsWhenRequested) { const std::string input = R"( OpCapability Shader OpMemoryModel Logical GLSL450 %1 = OpTypeInt 32 0 %2 = OpTypeVoid )"; const std::string expected = R"(OpCapability Shader ; 0x00000014 OpMemoryModel Logical GLSL450 ; 0x0000001c %1 = OpTypeInt 32 0 ; 0x00000028 %2 = OpTypeVoid ; 0x00000038 )"; EXPECT_THAT(EncodeAndDecodeSuccessfully( input, SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET), expected); } // Test version string. TEST_F(TextToBinaryTest, VersionString) { auto words = CompileSuccessfully(""); spv_text decoded_text = nullptr; EXPECT_THAT(spvBinaryToText(ScopedContext().context, words.data(), words.size(), SPV_BINARY_TO_TEXT_OPTION_NONE, &decoded_text, &diagnostic), Eq(SPV_SUCCESS)); EXPECT_EQ(nullptr, diagnostic); EXPECT_THAT(decoded_text->str, HasSubstr("Version: 1.0\n")) << EncodeAndDecodeSuccessfully(""); spvTextDestroy(decoded_text); } // Test generator string. // A test case for the generator string. This allows us to // test both of the 16-bit components of the generator word. struct GeneratorStringCase { uint16_t generator; uint16_t misc; std::string expected; }; using GeneratorStringTest = spvtest::TextToBinaryTestBase< ::testing::TestWithParam>; TEST_P(GeneratorStringTest, Sample) { auto words = CompileSuccessfully(""); EXPECT_EQ(2u, SPV_INDEX_GENERATOR_NUMBER); words[SPV_INDEX_GENERATOR_NUMBER] = SPV_GENERATOR_WORD(GetParam().generator, GetParam().misc); spv_text decoded_text = nullptr; EXPECT_THAT(spvBinaryToText(ScopedContext().context, words.data(), words.size(), SPV_BINARY_TO_TEXT_OPTION_NONE, &decoded_text, &diagnostic), Eq(SPV_SUCCESS)); EXPECT_THAT(diagnostic, Eq(nullptr)); EXPECT_THAT(std::string(decoded_text->str), HasSubstr(GetParam().expected)); spvTextDestroy(decoded_text); } INSTANTIATE_TEST_CASE_P(GeneratorStrings, GeneratorStringTest, ::testing::ValuesIn(std::vector{ {SPV_GENERATOR_KHRONOS, 12, "Khronos; 12"}, {SPV_GENERATOR_LUNARG, 99, "LunarG; 99"}, {SPV_GENERATOR_VALVE, 1, "Valve; 1"}, {SPV_GENERATOR_CODEPLAY, 65535, "Codeplay; 65535"}, {SPV_GENERATOR_NVIDIA, 19, "NVIDIA; 19"}, {SPV_GENERATOR_ARM, 1000, "ARM; 1000"}, {SPV_GENERATOR_KHRONOS_LLVM_TRANSLATOR, 38, "Khronos LLVM/SPIR-V Translator; 38"}, {SPV_GENERATOR_KHRONOS_ASSEMBLER, 2, "Khronos SPIR-V Tools Assembler; 2"}, {SPV_GENERATOR_KHRONOS_GLSLANG, 1, "Khronos Glslang Reference Front End; 1"}, {1000, 18, "Unknown(1000); 18"}, {65535, 32767, "Unknown(65535); 32767"}, }), ); } // anonymous namespace