// Copyright (c) 2015 The Khronos Group Inc. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and/or associated documentation files (the // "Materials"), to deal in the Materials without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Materials, and to // permit persons to whom the Materials are furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Materials. // // MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS // KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS // SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT // https://www.khronos.org/registry/ // // THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. #ifndef _LIBSPIRV_UTIL_HEX_FLOAT_H_ #define _LIBSPIRV_UTIL_HEX_FLOAT_H_ #include #include #include #include #include #include #include #include "bitutils.h" namespace spvutils { template struct FloatProxyTraits { typedef void uint_type; }; template <> struct FloatProxyTraits { typedef uint32_t uint_type; }; template <> struct FloatProxyTraits { typedef uint64_t uint_type; }; // Since copying a floating point number (especially if it is NaN) // does not guarantee that bits are preserved, this class lets us // store the type and use it as a float when necessary. template class FloatProxy { public: using uint_type = typename FloatProxyTraits::uint_type; // Since this is to act similar to the normal floats, // do not initialize the data by default. FloatProxy() = default; // Intentionally non-explicit. This is a proxy type so // implicit conversions allow us to use it more transparently. FloatProxy(T val) { data_ = BitwiseCast(val); } // Intentionally non-explicit. This is a proxy type so // implicit conversions allow us to use it more transparently. FloatProxy(uint_type val) { data_ = val; } // This is helpful to have and is guaranteed not to stomp bits. FloatProxy operator-() const { return data_ ^ (uint_type(0x1) << (sizeof(T) * 8 - 1)); } // Returns the data as a floating point value. T getAsFloat() const { return BitwiseCast(data_); } // Returns the raw data. uint_type data() const { return data_; } // Returns true if the value represents any type of NaN. bool isNan() { return std::isnan(getAsFloat()); } private: uint_type data_; }; template bool operator==(const FloatProxy& first, const FloatProxy& second) { return first.data() == second.data(); } // Reads a FloatProxy value as a normal float from a stream. template std::istream& operator>>(std::istream& is, FloatProxy& value) { T float_val; is >> float_val; value = FloatProxy(float_val); return is; } // This is an example traits. It is not meant to be used in practice, but will // be the default for any non-specialized type. template struct HexFloatTraits { // Integer type that can store this hex-float. typedef void uint_type; // Signed integer type that can store this hex-float. typedef void int_type; // The number of bits that are actually relevant in the uint_type. // This allows us to deal with, for example, 24-bit values in a 32-bit // integer. static const uint32_t num_used_bits = 0; // Number of bits that represent the exponent. static const uint32_t num_exponent_bits = 0; // Number of bits that represent the fractional part. static const uint32_t num_fraction_bits = 0; // The bias of the exponent. (How much we need to subtract from the stored // value to get the correct value.) static const uint32_t exponent_bias = 0; }; // Traits for IEEE float. // 1 sign bit, 8 exponent bits, 23 fractional bits. template <> struct HexFloatTraits> { typedef uint32_t uint_type; typedef int32_t int_type; static const uint_type num_used_bits = 32; static const uint_type num_exponent_bits = 8; static const uint_type num_fraction_bits = 23; static const uint_type exponent_bias = 127; }; // Traits for IEEE double. // 1 sign bit, 11 exponent bits, 52 fractional bits. template <> struct HexFloatTraits> { typedef uint64_t uint_type; typedef int64_t int_type; static const uint_type num_used_bits = 64; static const uint_type num_exponent_bits = 11; static const uint_type num_fraction_bits = 52; static const uint_type exponent_bias = 1023; }; // Template class that houses a floating pointer number. // It exposes a number of constants based on the provided traits to // assist in interpreting the bits of the value. template > class HexFloat { public: using uint_type = typename Traits::uint_type; using int_type = typename Traits::int_type; explicit HexFloat(T f) : value_(f) {} T value() const { return value_; } void set_value(T f) { value_ = f; } // These are all written like this because it is convenient to have // compile-time constants for all of these values. // Pass-through values to save typing. static const uint32_t num_used_bits = Traits::num_used_bits; static const uint32_t exponent_bias = Traits::exponent_bias; static const uint32_t num_exponent_bits = Traits::num_exponent_bits; static const uint32_t num_fraction_bits = Traits::num_fraction_bits; // Number of bits to shift left to set the highest relevant bit. static const uint32_t top_bit_left_shift = num_used_bits - 1; // How many nibbles (hex characters) the fractional part takes up. static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; // If the fractional part does not fit evenly into a hex character (4-bits) // then we have to left-shift to get rid of leading 0s. This is the amount // we have to shift (might be 0). static const uint32_t num_overflow_bits = fraction_nibbles * 4 - num_fraction_bits; // The representation of the fraction, not the actual bits. This // includes the leading bit that is usually implicit. static const uint_type fraction_represent_mask = spvutils::SetBits::get; // The topmost bit in the fraction. (The first non-implicit bit). static const uint_type fraction_top_bit = uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); // The mask for the encoded fraction. It does not include the // implicit bit. static const uint_type fraction_encode_mask = spvutils::SetBits::get; // The bit that is used as a sign. static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; // The bits that represent the exponent. static const uint_type exponent_mask = spvutils::SetBits::get; // How far left the exponent is shifted. static const uint32_t exponent_left_shift = num_fraction_bits; // How far from the right edge the fraction is shifted. static const uint32_t fraction_right_shift = (sizeof(uint_type) * 8) - num_fraction_bits; private: T value_; static_assert(num_used_bits == Traits::num_exponent_bits + Traits::num_fraction_bits + 1, "The number of bits do not fit"); }; // Returns 4 bits represented by the hex character. inline uint8_t get_nibble_from_character(char character) { const char* dec = "0123456789"; const char* lower = "abcdef"; const char* upper = "ABCDEF"; if (auto p = strchr(dec, character)) return p - dec; if (auto p = strchr(lower, character)) return p - lower + 0xa; if (auto p = strchr(upper, character)) return p - upper + 0xa; assert(false && "This was called with a non-hex character"); return 0; } // Outputs the given HexFloat to the stream. template std::ostream& operator<<(std::ostream& os, const HexFloat& value) { using HF = HexFloat; using uint_type = typename HF::uint_type; using int_type = typename HF::int_type; static_assert(HF::num_used_bits != 0, "num_used_bits must be non-zero for a valid float"); static_assert(HF::num_exponent_bits != 0, "num_exponent_bits must be non-zero for a valid float"); static_assert(HF::num_fraction_bits != 0, "num_fractin_bits must be non-zero for a valid float"); const uint_type bits = spvutils::BitwiseCast(value.value()); const char* const sign = (bits & HF::sign_mask) ? "-" : ""; const uint_type exponent = (bits & HF::exponent_mask) >> HF::num_fraction_bits; uint_type fraction = (bits & HF::fraction_encode_mask) << HF::num_overflow_bits; const bool is_zero = exponent == 0 && fraction == 0; const bool is_denorm = exponent == 0 && !is_zero; // exponent contains the biased exponent we have to convert it back into // the normal range. int_type int_exponent = static_cast(exponent) - HF::exponent_bias; // If the number is all zeros, then we actually have to NOT shift the // exponent. int_exponent = is_zero ? 0 : int_exponent; // If we are denorm, then start shifting, and decreasing the exponent until // our leading bit is 1. if (is_denorm) { while ((fraction & HF::fraction_top_bit) == 0) { fraction <<= 1; int_exponent -= 1; } // Since this is denormalized, we have to consume the leading 1 since it // will end up being implicit. fraction <<= 1; // eat the leading 1 fraction &= HF::fraction_represent_mask; } uint_type fraction_nibbles = HF::fraction_nibbles; // We do not have to display any trailing 0s, since this represents the // fractional part. while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { // Shift off any trailing values; fraction >>= 4; --fraction_nibbles; } os << sign << "0x" << (is_zero ? '0' : '1'); if (fraction_nibbles) { // Make sure to keep the leading 0s in place, since this is the fractional // part. os << "." << std::setw(fraction_nibbles) << std::setfill('0') << std::hex << fraction; } os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent; return os; } template inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, HexFloat& value) { T val; is >> val; if (negate_value) { val = -val; } value.set_value(val); return is; } // Reads a HexFloat from the given stream. // If the float is not encoded as a hex-float then it will be parsed // as a regular float. // This may fail if your stream does not support at least one unget. // Nan values can be encoded with "0x1.p+exponent_bias". // This would normally overflow a float and round to // infinity but this special pattern is the exact representation for a NaN, // and therefore is actually encoded as the correct NaN. To encode inf, // either 0x0p+exponent_bias can be specified or any exponent greater than // exponent_bias. // Examples using IEEE 32-bit float encoding. // 0x1.0p+128 (+inf) // -0x1.0p-128 (-inf) // // 0x1.1p+128 (+Nan) // -0x1.1p+128 (-Nan) // // 0x1p+129 (+inf) // -0x1p+129 (-inf) template std::istream& operator>>(std::istream& is, HexFloat& value) { using HF = HexFloat; using uint_type = typename HF::uint_type; using int_type = typename HF::int_type; value.set_value(T(0.f)); if (is.flags() & std::ios::skipws) { // If the user wants to skip whitespace , then we should obey that. while (std::isspace(is.peek())) { is.get(); } } char next_char = is.peek(); bool negate_value = false; if (next_char != '-' && next_char != '0') { return ParseNormalFloat(is, negate_value, value); } if (next_char == '-') { negate_value = true; is.get(); next_char = is.peek(); } if (next_char == '0') { is.get(); // We may have to unget this. char maybe_hex_start = is.peek(); if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { is.unget(); return ParseNormalFloat(is, negate_value, value); } else { is.get(); // Throw away the 'x'; } } else { return ParseNormalFloat(is, negate_value, value); } // This "looks" like a hex-float so treat it as one. bool seen_p = false; bool seen_dot = false; uint_type fraction_index = 0; uint_type fraction = 0; int_type exponent = HF::exponent_bias; // Strip off leading zeros so we don't have to special-case them later. while ((next_char = is.peek()) == '0') { is.get(); } bool is_denorm = true; // Assume denorm "representation" until we hear otherwise. // NB: This does not mean the value is actually denorm, // it just means that it was written 0. bool bits_written = false; // Stays false until we write a bit. while (!seen_p && !seen_dot) { // Handle characters that are left of the fractional part. if (next_char == '.') { seen_dot = true; } else if (next_char == 'p') { seen_p = true; } else if (::isxdigit(next_char)) { // We know this is not denormalized since we have stripped all leading // zeroes and we are not a ".". is_denorm = false; uint8_t number = get_nibble_from_character(next_char); for (int i = 0; i < 4; ++i, number <<= 1) { uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; if (bits_written) { // If we are here the bits represented belong in the fractional // part of the float, and we have to adjust the exponent accordingly. fraction |= write_bit << (HF::top_bit_left_shift - fraction_index++); exponent += 1; } bits_written |= write_bit != 0; } } else { // We have not found our exponent yet, so we have to fail. is.setstate(std::ios::failbit); return is; } is.get(); next_char = is.peek(); } bits_written = false; while (seen_dot && !seen_p) { // Handle only fractional parts now. if (next_char == 'p') { seen_p = true; } else if (::isxdigit(next_char)) { int number = get_nibble_from_character(next_char); for (int i = 0; i < 4; ++i, number <<= 1) { uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; bits_written |= write_bit != 0; if (is_denorm && !bits_written) { // Handle modifying the exponent here this way we can handle // an arbitrary number of hex values without overflowing our // integer. exponent -= 1; } else { fraction |= write_bit << (HF::top_bit_left_shift - fraction_index++); } } } else { // We still have not found our 'p' exponent yet, so this is not a valid // hex-float. is.setstate(std::ios::failbit); return is; } is.get(); next_char = is.peek(); } bool seen_sign = false; int8_t exponent_sign = 1; int_type written_exponent = 0; while (true) { if ((next_char == '-' || next_char == '+')) { if (seen_sign) { is.setstate(std::ios::failbit); return is; } seen_sign = true; exponent_sign = (next_char == '-') ? -1 : 1; } else if (::isdigit(next_char)) { // Hex-floats express their exponent as decimal. written_exponent *= 10; written_exponent += next_char - '0'; } else { break; } is.get(); next_char = is.peek(); } written_exponent *= exponent_sign; exponent += written_exponent; bool is_zero = is_denorm && (fraction == 0); if (is_denorm && !is_zero) { fraction <<= 1; exponent -= 1; } else if (is_zero) { exponent = 0; } if (exponent <= 0 && !is_zero) { fraction >>= 1; fraction |= static_cast(1) << HF::top_bit_left_shift; } fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; const uint_type max_exponent = SetBits::get; // Handle actual denorm numbers while (exponent < 0 && !is_zero) { fraction >>= 1; exponent += 1; fraction &= HF::fraction_encode_mask; if (fraction == 0) { // We have underflowed our fraction. We should clamp to zero. is_zero = true; exponent = 0; } } // We have overflowed so we should be inf/-inf. if (exponent > max_exponent) { exponent = max_exponent; fraction = 0; } uint_type output_bits = static_cast(negate_value ? 1 : 0) << HF::top_bit_left_shift; output_bits |= fraction; output_bits |= (exponent << HF::exponent_left_shift) & HF::exponent_mask; T output_float = spvutils::BitwiseCast(output_bits); value.set_value(output_float); return is; } // Writes a FloatProxy value to a stream. // Zero and normal numbers are printed in the usual notation, but with // enough digits to fully reproduce the value. Other values (subnormal, // NaN, and infinity) are printed as a hex float. template std::ostream& operator<<(std::ostream& os, const FloatProxy& value) { auto float_val = value.getAsFloat(); switch (std::fpclassify(float_val)) { case FP_ZERO: case FP_NORMAL: { auto saved_precision = os.precision(); os.precision(std::numeric_limits::digits10); os << float_val; os.precision(saved_precision); } break; default: os << HexFloat>(value); break; } return os; } } #endif // _LIBSPIRV_UTIL_HEX_FLOAT_H_