// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Validates correctness of composite SPIR-V instructions. #include "source/opcode.h" #include "source/spirv_target_env.h" #include "source/val/instruction.h" #include "source/val/validate.h" #include "source/val/validation_state.h" namespace spvtools { namespace val { namespace { // Returns the type of the value accessed by OpCompositeExtract or // OpCompositeInsert instruction. The function traverses the hierarchy of // nested data structures (structs, arrays, vectors, matrices) as directed by // the sequence of indices in the instruction. May return error if traversal // fails (encountered non-composite, out of bounds, no indices, nesting too // deep). spv_result_t GetExtractInsertValueType(ValidationState_t& _, const Instruction* inst, uint32_t* member_type) { const spv::Op opcode = inst->opcode(); assert(opcode == spv::Op::OpCompositeExtract || opcode == spv::Op::OpCompositeInsert); uint32_t word_index = opcode == spv::Op::OpCompositeExtract ? 4 : 5; const uint32_t num_words = static_cast(inst->words().size()); const uint32_t composite_id_index = word_index - 1; const uint32_t num_indices = num_words - word_index; const uint32_t kCompositeExtractInsertMaxNumIndices = 255; if (num_indices == 0) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected at least one index to Op" << spvOpcodeString(inst->opcode()) << ", zero found"; } else if (num_indices > kCompositeExtractInsertMaxNumIndices) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "The number of indexes in Op" << spvOpcodeString(opcode) << " may not exceed " << kCompositeExtractInsertMaxNumIndices << ". Found " << num_indices << " indexes."; } *member_type = _.GetTypeId(inst->word(composite_id_index)); if (*member_type == 0) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Composite to be an object of composite type"; } for (; word_index < num_words; ++word_index) { const uint32_t component_index = inst->word(word_index); const Instruction* const type_inst = _.FindDef(*member_type); assert(type_inst); switch (type_inst->opcode()) { case spv::Op::OpTypeVector: { *member_type = type_inst->word(2); const uint32_t vector_size = type_inst->word(3); if (component_index >= vector_size) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Vector access is out of bounds, vector size is " << vector_size << ", but access index is " << component_index; } break; } case spv::Op::OpTypeMatrix: { *member_type = type_inst->word(2); const uint32_t num_cols = type_inst->word(3); if (component_index >= num_cols) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Matrix access is out of bounds, matrix has " << num_cols << " columns, but access index is " << component_index; } break; } case spv::Op::OpTypeArray: { uint64_t array_size = 0; auto size = _.FindDef(type_inst->word(3)); *member_type = type_inst->word(2); if (spvOpcodeIsSpecConstant(size->opcode())) { // Cannot verify against the size of this array. break; } if (!_.GetConstantValUint64(type_inst->word(3), &array_size)) { assert(0 && "Array type definition is corrupt"); } if (component_index >= array_size) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Array access is out of bounds, array size is " << array_size << ", but access index is " << component_index; } break; } case spv::Op::OpTypeRuntimeArray: { *member_type = type_inst->word(2); // Array size is unknown. break; } case spv::Op::OpTypeStruct: { const size_t num_struct_members = type_inst->words().size() - 2; if (component_index >= num_struct_members) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Index is out of bounds, can not find index " << component_index << " in the structure '" << type_inst->id() << "'. This structure has " << num_struct_members << " members. Largest valid index is " << num_struct_members - 1 << "."; } *member_type = type_inst->word(component_index + 2); break; } case spv::Op::OpTypeCooperativeMatrixNV: { *member_type = type_inst->word(2); break; } default: return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Reached non-composite type while indexes still remain to " "be traversed."; } } return SPV_SUCCESS; } spv_result_t ValidateVectorExtractDynamic(ValidationState_t& _, const Instruction* inst) { const uint32_t result_type = inst->type_id(); const spv::Op result_opcode = _.GetIdOpcode(result_type); if (!spvOpcodeIsScalarType(result_opcode)) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Result Type to be a scalar type"; } const uint32_t vector_type = _.GetOperandTypeId(inst, 2); const spv::Op vector_opcode = _.GetIdOpcode(vector_type); if (vector_opcode != spv::Op::OpTypeVector) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Vector type to be OpTypeVector"; } if (_.GetComponentType(vector_type) != result_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Vector component type to be equal to Result Type"; } const auto index = _.FindDef(inst->GetOperandAs(3)); if (!index || index->type_id() == 0 || !_.IsIntScalarType(index->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Index to be int scalar"; } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot extract from a vector of 8- or 16-bit types"; } return SPV_SUCCESS; } spv_result_t ValidateVectorInsertDyanmic(ValidationState_t& _, const Instruction* inst) { const uint32_t result_type = inst->type_id(); const spv::Op result_opcode = _.GetIdOpcode(result_type); if (result_opcode != spv::Op::OpTypeVector) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Result Type to be OpTypeVector"; } const uint32_t vector_type = _.GetOperandTypeId(inst, 2); if (vector_type != result_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Vector type to be equal to Result Type"; } const uint32_t component_type = _.GetOperandTypeId(inst, 3); if (_.GetComponentType(result_type) != component_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Component type to be equal to Result Type " << "component type"; } const uint32_t index_type = _.GetOperandTypeId(inst, 4); if (!_.IsIntScalarType(index_type)) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Index to be int scalar"; } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot insert into a vector of 8- or 16-bit types"; } return SPV_SUCCESS; } spv_result_t ValidateCompositeConstruct(ValidationState_t& _, const Instruction* inst) { const uint32_t num_operands = static_cast(inst->operands().size()); const uint32_t result_type = inst->type_id(); const spv::Op result_opcode = _.GetIdOpcode(result_type); switch (result_opcode) { case spv::Op::OpTypeVector: { const uint32_t num_result_components = _.GetDimension(result_type); const uint32_t result_component_type = _.GetComponentType(result_type); uint32_t given_component_count = 0; if (num_operands <= 3) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected number of constituents to be at least 2"; } for (uint32_t operand_index = 2; operand_index < num_operands; ++operand_index) { const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index); if (operand_type == result_component_type) { ++given_component_count; } else { if (_.GetIdOpcode(operand_type) != spv::Op::OpTypeVector || _.GetComponentType(operand_type) != result_component_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Constituents to be scalars or vectors of" << " the same type as Result Type components"; } given_component_count += _.GetDimension(operand_type); } } if (num_result_components != given_component_count) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected total number of given components to be equal " << "to the size of Result Type vector"; } break; } case spv::Op::OpTypeMatrix: { uint32_t result_num_rows = 0; uint32_t result_num_cols = 0; uint32_t result_col_type = 0; uint32_t result_component_type = 0; if (!_.GetMatrixTypeInfo(result_type, &result_num_rows, &result_num_cols, &result_col_type, &result_component_type)) { assert(0); } if (result_num_cols + 2 != num_operands) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected total number of Constituents to be equal " << "to the number of columns of Result Type matrix"; } for (uint32_t operand_index = 2; operand_index < num_operands; ++operand_index) { const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index); if (operand_type != result_col_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Constituent type to be equal to the column " << "type Result Type matrix"; } } break; } case spv::Op::OpTypeArray: { const Instruction* const array_inst = _.FindDef(result_type); assert(array_inst); assert(array_inst->opcode() == spv::Op::OpTypeArray); auto size = _.FindDef(array_inst->word(3)); if (spvOpcodeIsSpecConstant(size->opcode())) { // Cannot verify against the size of this array. break; } uint64_t array_size = 0; if (!_.GetConstantValUint64(array_inst->word(3), &array_size)) { assert(0 && "Array type definition is corrupt"); } if (array_size + 2 != num_operands) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected total number of Constituents to be equal " << "to the number of elements of Result Type array"; } const uint32_t result_component_type = array_inst->word(2); for (uint32_t operand_index = 2; operand_index < num_operands; ++operand_index) { const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index); if (operand_type != result_component_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Constituent type to be equal to the column " << "type Result Type array"; } } break; } case spv::Op::OpTypeStruct: { const Instruction* const struct_inst = _.FindDef(result_type); assert(struct_inst); assert(struct_inst->opcode() == spv::Op::OpTypeStruct); if (struct_inst->operands().size() + 1 != num_operands) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected total number of Constituents to be equal " << "to the number of members of Result Type struct"; } for (uint32_t operand_index = 2; operand_index < num_operands; ++operand_index) { const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index); const uint32_t member_type = struct_inst->word(operand_index); if (operand_type != member_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Constituent type to be equal to the " << "corresponding member type of Result Type struct"; } } break; } case spv::Op::OpTypeCooperativeMatrixNV: { const auto result_type_inst = _.FindDef(result_type); assert(result_type_inst); const auto component_type_id = result_type_inst->GetOperandAs(1); if (3 != num_operands) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected single constituent"; } const uint32_t operand_type_id = _.GetOperandTypeId(inst, 2); if (operand_type_id != component_type_id) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Constituent type to be equal to the component type"; } break; } default: { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Result Type to be a composite type"; } } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot create a composite containing 8- or 16-bit types"; } return SPV_SUCCESS; } spv_result_t ValidateCompositeExtract(ValidationState_t& _, const Instruction* inst) { uint32_t member_type = 0; if (spv_result_t error = GetExtractInsertValueType(_, inst, &member_type)) { return error; } const uint32_t result_type = inst->type_id(); if (result_type != member_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Result type (Op" << spvOpcodeString(_.GetIdOpcode(result_type)) << ") does not match the type that results from indexing into " "the composite (Op" << spvOpcodeString(_.GetIdOpcode(member_type)) << ")."; } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot extract from a composite of 8- or 16-bit types"; } return SPV_SUCCESS; } spv_result_t ValidateCompositeInsert(ValidationState_t& _, const Instruction* inst) { const uint32_t object_type = _.GetOperandTypeId(inst, 2); const uint32_t composite_type = _.GetOperandTypeId(inst, 3); const uint32_t result_type = inst->type_id(); if (result_type != composite_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "The Result Type must be the same as Composite type in Op" << spvOpcodeString(inst->opcode()) << " yielding Result Id " << result_type << "."; } uint32_t member_type = 0; if (spv_result_t error = GetExtractInsertValueType(_, inst, &member_type)) { return error; } if (object_type != member_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "The Object type (Op" << spvOpcodeString(_.GetIdOpcode(object_type)) << ") does not match the type that results from indexing into the " "Composite (Op" << spvOpcodeString(_.GetIdOpcode(member_type)) << ")."; } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot insert into a composite of 8- or 16-bit types"; } return SPV_SUCCESS; } spv_result_t ValidateCopyObject(ValidationState_t& _, const Instruction* inst) { const uint32_t result_type = inst->type_id(); const uint32_t operand_type = _.GetOperandTypeId(inst, 2); if (operand_type != result_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Result Type and Operand type to be the same"; } if (_.IsVoidType(result_type)) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "OpCopyObject cannot have void result type"; } return SPV_SUCCESS; } spv_result_t ValidateTranspose(ValidationState_t& _, const Instruction* inst) { uint32_t result_num_rows = 0; uint32_t result_num_cols = 0; uint32_t result_col_type = 0; uint32_t result_component_type = 0; const uint32_t result_type = inst->type_id(); if (!_.GetMatrixTypeInfo(result_type, &result_num_rows, &result_num_cols, &result_col_type, &result_component_type)) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Result Type to be a matrix type"; } const uint32_t matrix_type = _.GetOperandTypeId(inst, 2); uint32_t matrix_num_rows = 0; uint32_t matrix_num_cols = 0; uint32_t matrix_col_type = 0; uint32_t matrix_component_type = 0; if (!_.GetMatrixTypeInfo(matrix_type, &matrix_num_rows, &matrix_num_cols, &matrix_col_type, &matrix_component_type)) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected Matrix to be of type OpTypeMatrix"; } if (result_component_type != matrix_component_type) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected component types of Matrix and Result Type to be " << "identical"; } if (result_num_rows != matrix_num_cols || result_num_cols != matrix_num_rows) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Expected number of columns and the column size of Matrix " << "to be the reverse of those of Result Type"; } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot transpose matrices of 16-bit floats"; } return SPV_SUCCESS; } spv_result_t ValidateVectorShuffle(ValidationState_t& _, const Instruction* inst) { auto resultType = _.FindDef(inst->type_id()); if (!resultType || resultType->opcode() != spv::Op::OpTypeVector) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The Result Type of OpVectorShuffle must be" << " OpTypeVector. Found Op" << spvOpcodeString(static_cast(resultType->opcode())) << "."; } // The number of components in Result Type must be the same as the number of // Component operands. auto componentCount = inst->operands().size() - 4; auto resultVectorDimension = resultType->GetOperandAs(2); if (componentCount != resultVectorDimension) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "OpVectorShuffle component literals count does not match " "Result Type " << _.getIdName(resultType->id()) << "s vector component count."; } // Vector 1 and Vector 2 must both have vector types, with the same Component // Type as Result Type. auto vector1Object = _.FindDef(inst->GetOperandAs(2)); auto vector1Type = _.FindDef(vector1Object->type_id()); auto vector2Object = _.FindDef(inst->GetOperandAs(3)); auto vector2Type = _.FindDef(vector2Object->type_id()); if (!vector1Type || vector1Type->opcode() != spv::Op::OpTypeVector) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The type of Vector 1 must be OpTypeVector."; } if (!vector2Type || vector2Type->opcode() != spv::Op::OpTypeVector) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The type of Vector 2 must be OpTypeVector."; } auto resultComponentType = resultType->GetOperandAs(1); if (vector1Type->GetOperandAs(1) != resultComponentType) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The Component Type of Vector 1 must be the same as ResultType."; } if (vector2Type->GetOperandAs(1) != resultComponentType) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "The Component Type of Vector 2 must be the same as ResultType."; } // All Component literals must either be FFFFFFFF or in [0, N - 1]. auto vector1ComponentCount = vector1Type->GetOperandAs(2); auto vector2ComponentCount = vector2Type->GetOperandAs(2); auto N = vector1ComponentCount + vector2ComponentCount; auto firstLiteralIndex = 4; for (size_t i = firstLiteralIndex; i < inst->operands().size(); ++i) { auto literal = inst->GetOperandAs(i); if (literal != 0xFFFFFFFF && literal >= N) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Component index " << literal << " is out of bounds for " << "combined (Vector1 + Vector2) size of " << N << "."; } } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot shuffle a vector of 8- or 16-bit types"; } return SPV_SUCCESS; } spv_result_t ValidateCopyLogical(ValidationState_t& _, const Instruction* inst) { const auto result_type = _.FindDef(inst->type_id()); const auto source = _.FindDef(inst->GetOperandAs(2u)); const auto source_type = _.FindDef(source->type_id()); if (!source_type || !result_type || source_type == result_type) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Result Type must not equal the Operand type"; } if (!_.LogicallyMatch(source_type, result_type, false)) { return _.diag(SPV_ERROR_INVALID_ID, inst) << "Result Type does not logically match the Operand type"; } if (_.HasCapability(spv::Capability::Shader) && _.ContainsLimitedUseIntOrFloatType(inst->type_id())) { return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Cannot copy composites of 8- or 16-bit types"; } return SPV_SUCCESS; } } // anonymous namespace // Validates correctness of composite instructions. spv_result_t CompositesPass(ValidationState_t& _, const Instruction* inst) { switch (inst->opcode()) { case spv::Op::OpVectorExtractDynamic: return ValidateVectorExtractDynamic(_, inst); case spv::Op::OpVectorInsertDynamic: return ValidateVectorInsertDyanmic(_, inst); case spv::Op::OpVectorShuffle: return ValidateVectorShuffle(_, inst); case spv::Op::OpCompositeConstruct: return ValidateCompositeConstruct(_, inst); case spv::Op::OpCompositeExtract: return ValidateCompositeExtract(_, inst); case spv::Op::OpCompositeInsert: return ValidateCompositeInsert(_, inst); case spv::Op::OpCopyObject: return ValidateCopyObject(_, inst); case spv::Op::OpTranspose: return ValidateTranspose(_, inst); case spv::Op::OpCopyLogical: return ValidateCopyLogical(_, inst); default: break; } return SPV_SUCCESS; } } // namespace val } // namespace spvtools