// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/val/validate.h" #include #include #include #include #include #include #include #include #include #include "source/binary.h" #include "source/diagnostic.h" #include "source/enum_string_mapping.h" #include "source/extensions.h" #include "source/instruction.h" #include "source/opcode.h" #include "source/operand.h" #include "source/spirv_constant.h" #include "source/spirv_endian.h" #include "source/spirv_target_env.h" #include "source/spirv_validator_options.h" #include "source/val/construct.h" #include "source/val/function.h" #include "source/val/instruction.h" #include "source/val/validation_state.h" #include "spirv-tools/libspirv.h" namespace spvtools { namespace val { namespace { // TODO(umar): Validate header // TODO(umar): The binary parser validates the magic word, and the length of the // header, but nothing else. spv_result_t setHeader(void* user_data, spv_endianness_t, uint32_t, uint32_t version, uint32_t generator, uint32_t id_bound, uint32_t) { // Record the ID bound so that the validator can ensure no ID is out of bound. ValidationState_t& _ = *(reinterpret_cast(user_data)); _.setIdBound(id_bound); _.setGenerator(generator); _.setVersion(version); return SPV_SUCCESS; } // Parses OpExtension instruction and registers extension. void RegisterExtension(ValidationState_t& _, const spv_parsed_instruction_t* inst) { const std::string extension_str = spvtools::GetExtensionString(inst); Extension extension; if (!GetExtensionFromString(extension_str.c_str(), &extension)) { // The error will be logged in the ProcessInstruction pass. return; } _.RegisterExtension(extension); } // Parses the beginning of the module searching for OpExtension instructions. // Registers extensions if recognized. Returns SPV_REQUESTED_TERMINATION // once an instruction which is not SpvOpCapability and SpvOpExtension is // encountered. According to the SPIR-V spec extensions are declared after // capabilities and before everything else. spv_result_t ProcessExtensions(void* user_data, const spv_parsed_instruction_t* inst) { const SpvOp opcode = static_cast(inst->opcode); if (opcode == SpvOpCapability) return SPV_SUCCESS; if (opcode == SpvOpExtension) { ValidationState_t& _ = *(reinterpret_cast(user_data)); RegisterExtension(_, inst); return SPV_SUCCESS; } // OpExtension block is finished, requesting termination. return SPV_REQUESTED_TERMINATION; } spv_result_t ProcessInstruction(void* user_data, const spv_parsed_instruction_t* inst) { ValidationState_t& _ = *(reinterpret_cast(user_data)); auto* instruction = _.AddOrderedInstruction(inst); _.RegisterDebugInstruction(instruction); return SPV_SUCCESS; } void printDot(const ValidationState_t& _, const BasicBlock& other) { std::string block_string; if (other.successors()->empty()) { block_string += "end "; } else { for (auto block : *other.successors()) { block_string += _.getIdOrName(block->id()) + " "; } } printf("%10s -> {%s\b}\n", _.getIdOrName(other.id()).c_str(), block_string.c_str()); } void PrintBlocks(ValidationState_t& _, Function func) { assert(func.first_block()); printf("%10s -> %s\n", _.getIdOrName(func.id()).c_str(), _.getIdOrName(func.first_block()->id()).c_str()); for (const auto& block : func.ordered_blocks()) { printDot(_, *block); } } #ifdef __clang__ #define UNUSED(func) [[gnu::unused]] func #elif defined(__GNUC__) #define UNUSED(func) \ func __attribute__((unused)); \ func #elif defined(_MSC_VER) #define UNUSED(func) func #endif UNUSED(void PrintDotGraph(ValidationState_t& _, Function func)) { if (func.first_block()) { std::string func_name(_.getIdOrName(func.id())); printf("digraph %s {\n", func_name.c_str()); PrintBlocks(_, func); printf("}\n"); } } spv_result_t ValidateForwardDecls(ValidationState_t& _) { if (_.unresolved_forward_id_count() == 0) return SPV_SUCCESS; std::stringstream ss; std::vector ids = _.UnresolvedForwardIds(); std::transform( std::begin(ids), std::end(ids), std::ostream_iterator(ss, " "), bind(&ValidationState_t::getIdName, std::ref(_), std::placeholders::_1)); auto id_str = ss.str(); return _.diag(SPV_ERROR_INVALID_ID, nullptr) << "The following forward referenced IDs have not been defined:\n" << id_str.substr(0, id_str.size() - 1); } // Entry point validation. Based on 2.16.1 (Universal Validation Rules) of the // SPIRV spec: // * There is at least one OpEntryPoint instruction, unless the Linkage // capability is being used. // * No function can be targeted by both an OpEntryPoint instruction and an // OpFunctionCall instruction. spv_result_t ValidateEntryPoints(ValidationState_t& _) { _.ComputeFunctionToEntryPointMapping(); if (_.entry_points().empty() && !_.HasCapability(SpvCapabilityLinkage)) { return _.diag(SPV_ERROR_INVALID_BINARY, nullptr) << "No OpEntryPoint instruction was found. This is only allowed if " "the Linkage capability is being used."; } for (const auto& entry_point : _.entry_points()) { if (_.IsFunctionCallTarget(entry_point)) { return _.diag(SPV_ERROR_INVALID_BINARY, _.FindDef(entry_point)) << "A function (" << entry_point << ") may not be targeted by both an OpEntryPoint instruction and " "an OpFunctionCall instruction."; } } return SPV_SUCCESS; } spv_result_t ValidateBinaryUsingContextAndValidationState( const spv_context_t& context, const uint32_t* words, const size_t num_words, spv_diagnostic* pDiagnostic, ValidationState_t* vstate) { auto binary = std::unique_ptr( new spv_const_binary_t{words, num_words}); spv_endianness_t endian; spv_position_t position = {}; if (spvBinaryEndianness(binary.get(), &endian)) { return DiagnosticStream(position, context.consumer, "", SPV_ERROR_INVALID_BINARY) << "Invalid SPIR-V magic number."; } spv_header_t header; if (spvBinaryHeaderGet(binary.get(), endian, &header)) { return DiagnosticStream(position, context.consumer, "", SPV_ERROR_INVALID_BINARY) << "Invalid SPIR-V header."; } if (header.version > spvVersionForTargetEnv(context.target_env)) { return DiagnosticStream(position, context.consumer, "", SPV_ERROR_WRONG_VERSION) << "Invalid SPIR-V binary version " << SPV_SPIRV_VERSION_MAJOR_PART(header.version) << "." << SPV_SPIRV_VERSION_MINOR_PART(header.version) << " for target environment " << spvTargetEnvDescription(context.target_env) << "."; } // Look for OpExtension instructions and register extensions. spvBinaryParse(&context, vstate, words, num_words, /* parsed_header = */ nullptr, ProcessExtensions, /* diagnostic = */ nullptr); // Parse the module and perform inline validation checks. These checks do // not require the the knowledge of the whole module. if (auto error = spvBinaryParse(&context, vstate, words, num_words, setHeader, ProcessInstruction, pDiagnostic)) { return error; } for (auto& instruction : vstate->ordered_instructions()) { { // In order to do this work outside of Process Instruction we need to be // able to, briefly, de-const the instruction. Instruction* inst = const_cast(&instruction); if (inst->opcode() == SpvOpEntryPoint) { const auto entry_point = inst->GetOperandAs(1); const auto execution_model = inst->GetOperandAs(0); const char* str = reinterpret_cast( inst->words().data() + inst->operand(2).offset); ValidationState_t::EntryPointDescription desc; desc.name = str; std::vector interfaces; for (size_t j = 3; j < inst->operands().size(); ++j) desc.interfaces.push_back(inst->word(inst->operand(j).offset)); vstate->RegisterEntryPoint(entry_point, execution_model, std::move(desc)); } if (inst->opcode() == SpvOpFunctionCall) { if (!vstate->in_function_body()) { return vstate->diag(SPV_ERROR_INVALID_LAYOUT, &instruction) << "A FunctionCall must happen within a function body."; } vstate->AddFunctionCallTarget(inst->GetOperandAs(2)); } if (vstate->in_function_body()) { inst->set_function(&(vstate->current_function())); inst->set_block(vstate->current_function().current_block()); if (vstate->in_block() && spvOpcodeIsBlockTerminator(inst->opcode())) { vstate->current_function().current_block()->set_terminator(inst); } } if (auto error = IdPass(*vstate, inst)) return error; } if (auto error = CapabilityPass(*vstate, &instruction)) return error; if (auto error = DataRulesPass(*vstate, &instruction)) return error; if (auto error = ModuleLayoutPass(*vstate, &instruction)) return error; if (auto error = CfgPass(*vstate, &instruction)) return error; if (auto error = InstructionPass(*vstate, &instruction)) return error; // Now that all of the checks are done, update the state. { Instruction* inst = const_cast(&instruction); vstate->RegisterInstruction(inst); } if (auto error = UpdateIdUse(*vstate, &instruction)) return error; } if (!vstate->has_memory_model_specified()) return vstate->diag(SPV_ERROR_INVALID_LAYOUT, nullptr) << "Missing required OpMemoryModel instruction."; if (vstate->in_function_body()) return vstate->diag(SPV_ERROR_INVALID_LAYOUT, nullptr) << "Missing OpFunctionEnd at end of module."; // Catch undefined forward references before performing further checks. if (auto error = ValidateForwardDecls(*vstate)) return error; // Validate individual opcodes. for (size_t i = 0; i < vstate->ordered_instructions().size(); ++i) { auto& instruction = vstate->ordered_instructions()[i]; // Keep these passes in the order they appear in the SPIR-V specification // sections to maintain test consistency. // Miscellaneous if (auto error = DebugPass(*vstate, &instruction)) return error; if (auto error = AnnotationPass(*vstate, &instruction)) return error; if (auto error = ExtInstPass(*vstate, &instruction)) return error; if (auto error = ModeSettingPass(*vstate, &instruction)) return error; if (auto error = TypePass(*vstate, &instruction)) return error; if (auto error = ConstantPass(*vstate, &instruction)) return error; if (auto error = MemoryPass(*vstate, &instruction)) return error; if (auto error = FunctionPass(*vstate, &instruction)) return error; if (auto error = ImagePass(*vstate, &instruction)) return error; if (auto error = ConversionPass(*vstate, &instruction)) return error; if (auto error = CompositesPass(*vstate, &instruction)) return error; if (auto error = ArithmeticsPass(*vstate, &instruction)) return error; if (auto error = BitwisePass(*vstate, &instruction)) return error; if (auto error = LogicalsPass(*vstate, &instruction)) return error; if (auto error = ControlFlowPass(*vstate, &instruction)) return error; if (auto error = DerivativesPass(*vstate, &instruction)) return error; if (auto error = AtomicsPass(*vstate, &instruction)) return error; if (auto error = PrimitivesPass(*vstate, &instruction)) return error; if (auto error = BarriersPass(*vstate, &instruction)) return error; // Group // Device-Side Enqueue // Pipe if (auto error = NonUniformPass(*vstate, &instruction)) return error; if (auto error = LiteralsPass(*vstate, &instruction)) return error; // Validate the preconditions involving adjacent instructions. e.g. SpvOpPhi // must only be preceeded by SpvOpLabel, SpvOpPhi, or SpvOpLine. if (auto error = ValidateAdjacency(*vstate, i)) return error; } if (auto error = ValidateEntryPoints(*vstate)) return error; // CFG checks are performed after the binary has been parsed // and the CFGPass has collected information about the control flow if (auto error = PerformCfgChecks(*vstate)) return error; if (auto error = CheckIdDefinitionDominateUse(*vstate)) return error; if (auto error = ValidateDecorations(*vstate)) return error; if (auto error = ValidateInterfaces(*vstate)) return error; // TODO(dsinclair): Restructure ValidateBuiltins so we can move into the // for() above as it loops over all ordered_instructions internally. if (auto error = ValidateBuiltIns(*vstate)) return error; // These checks must be performed after individual opcode checks because // those checks register the limitation checked here. for (const auto inst : vstate->ordered_instructions()) { if (auto error = ValidateExecutionLimitations(*vstate, &inst)) return error; } return SPV_SUCCESS; } } // namespace spv_result_t ValidateBinaryAndKeepValidationState( const spv_const_context context, spv_const_validator_options options, const uint32_t* words, const size_t num_words, spv_diagnostic* pDiagnostic, std::unique_ptr* vstate) { spv_context_t hijack_context = *context; if (pDiagnostic) { *pDiagnostic = nullptr; UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic); } vstate->reset( new ValidationState_t(&hijack_context, options, words, num_words)); return ValidateBinaryUsingContextAndValidationState( hijack_context, words, num_words, pDiagnostic, vstate->get()); } } // namespace val } // namespace spvtools spv_result_t spvValidate(const spv_const_context context, const spv_const_binary binary, spv_diagnostic* pDiagnostic) { return spvValidateBinary(context, binary->code, binary->wordCount, pDiagnostic); } spv_result_t spvValidateBinary(const spv_const_context context, const uint32_t* words, const size_t num_words, spv_diagnostic* pDiagnostic) { spv_context_t hijack_context = *context; if (pDiagnostic) { *pDiagnostic = nullptr; spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic); } // This interface is used for default command line options. spv_validator_options default_options = spvValidatorOptionsCreate(); // Create the ValidationState using the context and default options. spvtools::val::ValidationState_t vstate(&hijack_context, default_options, words, num_words); spv_result_t result = spvtools::val::ValidateBinaryUsingContextAndValidationState( hijack_context, words, num_words, pDiagnostic, &vstate); spvValidatorOptionsDestroy(default_options); return result; } spv_result_t spvValidateWithOptions(const spv_const_context context, spv_const_validator_options options, const spv_const_binary binary, spv_diagnostic* pDiagnostic) { spv_context_t hijack_context = *context; if (pDiagnostic) { *pDiagnostic = nullptr; spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic); } // Create the ValidationState using the context. spvtools::val::ValidationState_t vstate(&hijack_context, options, binary->code, binary->wordCount); return spvtools::val::ValidateBinaryUsingContextAndValidationState( hijack_context, binary->code, binary->wordCount, pDiagnostic, &vstate); }