// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "val/validation_state.h" #include #include "opcode.h" #include "val/basic_block.h" #include "val/construct.h" #include "val/function.h" using std::deque; using std::make_pair; using std::pair; using std::string; using std::unordered_map; using std::vector; namespace libspirv { namespace { bool IsInstructionInLayoutSection(ModuleLayoutSection layout, SpvOp op) { // See Section 2.4 bool out = false; // clang-format off switch (layout) { case kLayoutCapabilities: out = op == SpvOpCapability; break; case kLayoutExtensions: out = op == SpvOpExtension; break; case kLayoutExtInstImport: out = op == SpvOpExtInstImport; break; case kLayoutMemoryModel: out = op == SpvOpMemoryModel; break; case kLayoutEntryPoint: out = op == SpvOpEntryPoint; break; case kLayoutExecutionMode: out = op == SpvOpExecutionMode; break; case kLayoutDebug1: switch (op) { case SpvOpSourceContinued: case SpvOpSource: case SpvOpSourceExtension: case SpvOpString: out = true; break; default: break; } break; case kLayoutDebug2: switch (op) { case SpvOpName: case SpvOpMemberName: out = true; break; default: break; } break; case kLayoutDebug3: // Only OpModuleProcessed is allowed here. out = (op == SpvOpModuleProcessed); break; case kLayoutAnnotations: switch (op) { case SpvOpDecorate: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: case SpvOpDecorationGroup: out = true; break; default: break; } break; case kLayoutTypes: if (spvOpcodeGeneratesType(op) || spvOpcodeIsConstant(op)) { out = true; break; } switch (op) { case SpvOpTypeForwardPointer: case SpvOpVariable: case SpvOpLine: case SpvOpNoLine: case SpvOpUndef: out = true; break; default: break; } break; case kLayoutFunctionDeclarations: case kLayoutFunctionDefinitions: // NOTE: These instructions should NOT be in these layout sections if (spvOpcodeGeneratesType(op) || spvOpcodeIsConstant(op)) { out = false; break; } switch (op) { case SpvOpCapability: case SpvOpExtension: case SpvOpExtInstImport: case SpvOpMemoryModel: case SpvOpEntryPoint: case SpvOpExecutionMode: case SpvOpSourceContinued: case SpvOpSource: case SpvOpSourceExtension: case SpvOpString: case SpvOpName: case SpvOpMemberName: case SpvOpModuleProcessed: case SpvOpDecorate: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: case SpvOpDecorationGroup: case SpvOpTypeForwardPointer: out = false; break; default: out = true; break; } } // clang-format on return out; } } // anonymous namespace ValidationState_t::ValidationState_t(const spv_const_context ctx, const spv_const_validator_options opt) : context_(ctx), options_(opt), instruction_counter_(0), unresolved_forward_ids_{}, operand_names_{}, current_layout_section_(kLayoutCapabilities), module_functions_(), module_capabilities_(), module_extensions_(), ordered_instructions_(), all_definitions_(), global_vars_(), local_vars_(), struct_nesting_depth_(), grammar_(ctx), addressing_model_(SpvAddressingModelLogical), memory_model_(SpvMemoryModelSimple), in_function_(false) { assert(opt && "Validator options may not be Null."); } spv_result_t ValidationState_t::ForwardDeclareId(uint32_t id) { unresolved_forward_ids_.insert(id); return SPV_SUCCESS; } spv_result_t ValidationState_t::RemoveIfForwardDeclared(uint32_t id) { unresolved_forward_ids_.erase(id); return SPV_SUCCESS; } spv_result_t ValidationState_t::RegisterForwardPointer(uint32_t id) { forward_pointer_ids_.insert(id); return SPV_SUCCESS; } bool ValidationState_t::IsForwardPointer(uint32_t id) const { return (forward_pointer_ids_.find(id) != forward_pointer_ids_.end()); } void ValidationState_t::AssignNameToId(uint32_t id, string name) { operand_names_[id] = name; } string ValidationState_t::getIdName(uint32_t id) const { std::stringstream out; out << id; if (operand_names_.find(id) != end(operand_names_)) { out << "[" << operand_names_.at(id) << "]"; } return out.str(); } string ValidationState_t::getIdOrName(uint32_t id) const { std::stringstream out; if (operand_names_.find(id) != end(operand_names_)) { out << operand_names_.at(id); } else { out << id; } return out.str(); } size_t ValidationState_t::unresolved_forward_id_count() const { return unresolved_forward_ids_.size(); } vector ValidationState_t::UnresolvedForwardIds() const { vector out(begin(unresolved_forward_ids_), end(unresolved_forward_ids_)); return out; } bool ValidationState_t::IsDefinedId(uint32_t id) const { return all_definitions_.find(id) != end(all_definitions_); } const Instruction* ValidationState_t::FindDef(uint32_t id) const { auto it = all_definitions_.find(id); if (it == all_definitions_.end()) return nullptr; return it->second; } Instruction* ValidationState_t::FindDef(uint32_t id) { auto it = all_definitions_.find(id); if (it == all_definitions_.end()) return nullptr; return it->second; } // Increments the instruction count. Used for diagnostic int ValidationState_t::increment_instruction_count() { return instruction_counter_++; } ModuleLayoutSection ValidationState_t::current_layout_section() const { return current_layout_section_; } void ValidationState_t::ProgressToNextLayoutSectionOrder() { // Guard against going past the last element(kLayoutFunctionDefinitions) if (current_layout_section_ <= kLayoutFunctionDefinitions) { current_layout_section_ = static_cast(current_layout_section_ + 1); } } bool ValidationState_t::IsOpcodeInCurrentLayoutSection(SpvOp op) { return IsInstructionInLayoutSection(current_layout_section_, op); } DiagnosticStream ValidationState_t::diag(spv_result_t error_code) const { return libspirv::DiagnosticStream( {0, 0, static_cast(instruction_counter_)}, context_->consumer, error_code); } deque& ValidationState_t::functions() { return module_functions_; } Function& ValidationState_t::current_function() { assert(in_function_body()); return module_functions_.back(); } const Function& ValidationState_t::current_function() const { assert(in_function_body()); return module_functions_.back(); } bool ValidationState_t::in_function_body() const { return in_function_; } bool ValidationState_t::in_block() const { return module_functions_.empty() == false && module_functions_.back().current_block() != nullptr; } void ValidationState_t::RegisterCapability(SpvCapability cap) { // Avoid redundant work. Otherwise the recursion could induce work // quadrdatic in the capability dependency depth. (Ok, not much, but // it's something.) if (module_capabilities_.Contains(cap)) return; module_capabilities_.Add(cap); spv_operand_desc desc; if (SPV_SUCCESS == grammar_.lookupOperand(SPV_OPERAND_TYPE_CAPABILITY, cap, &desc)) { CapabilitySet(desc->numCapabilities, desc->capabilities) .ForEach([this](SpvCapability c) { RegisterCapability(c); }); } switch (cap) { case SpvCapabilityInt16: features_.declare_int16_type = true; break; case SpvCapabilityFloat16: case SpvCapabilityFloat16Buffer: features_.declare_float16_type = true; break; case SpvCapabilityStorageUniformBufferBlock16: case SpvCapabilityStorageUniform16: case SpvCapabilityStoragePushConstant16: case SpvCapabilityStorageInputOutput16: features_.declare_int16_type = true; features_.declare_float16_type = true; features_.free_fp_rounding_mode = true; break; case SpvCapabilityVariablePointers: features_.variable_pointers = true; features_.variable_pointers_storage_buffer = true; break; case SpvCapabilityVariablePointersStorageBuffer: features_.variable_pointers_storage_buffer = true; break; default: break; } } void ValidationState_t::RegisterExtension(Extension ext) { if (module_extensions_.Contains(ext)) return; module_extensions_.Add(ext); } bool ValidationState_t::HasAnyOfCapabilities( const CapabilitySet& capabilities) const { return module_capabilities_.HasAnyOf(capabilities); } bool ValidationState_t::HasAnyOfExtensions( const ExtensionSet& extensions) const { return module_extensions_.HasAnyOf(extensions); } void ValidationState_t::set_addressing_model(SpvAddressingModel am) { addressing_model_ = am; } SpvAddressingModel ValidationState_t::addressing_model() const { return addressing_model_; } void ValidationState_t::set_memory_model(SpvMemoryModel mm) { memory_model_ = mm; } SpvMemoryModel ValidationState_t::memory_model() const { return memory_model_; } spv_result_t ValidationState_t::RegisterFunction( uint32_t id, uint32_t ret_type_id, SpvFunctionControlMask function_control, uint32_t function_type_id) { assert(in_function_body() == false && "RegisterFunction can only be called when parsing the binary outside " "of another function"); in_function_ = true; module_functions_.emplace_back(id, ret_type_id, function_control, function_type_id); // TODO(umar): validate function type and type_id return SPV_SUCCESS; } spv_result_t ValidationState_t::RegisterFunctionEnd() { assert(in_function_body() == true && "RegisterFunctionEnd can only be called when parsing the binary " "inside of another function"); assert(in_block() == false && "RegisterFunctionParameter can only be called when parsing the binary " "ouside of a block"); current_function().RegisterFunctionEnd(); in_function_ = false; return SPV_SUCCESS; } void ValidationState_t::RegisterInstruction( const spv_parsed_instruction_t& inst) { if (in_function_body()) { ordered_instructions_.emplace_back(&inst, ¤t_function(), current_function().current_block()); } else { ordered_instructions_.emplace_back(&inst, nullptr, nullptr); } uint32_t id = ordered_instructions_.back().id(); if (id) { all_definitions_.insert(make_pair(id, &ordered_instructions_.back())); } // If the instruction is using an OpTypeSampledImage as an operand, it should // be recorded. The validator will ensure that all usages of an // OpTypeSampledImage and its definition are in the same basic block. for (uint16_t i = 0; i < inst.num_operands; ++i) { const spv_parsed_operand_t& operand = inst.operands[i]; if (SPV_OPERAND_TYPE_ID == operand.type) { const uint32_t operand_word = inst.words[operand.offset]; Instruction* operand_inst = FindDef(operand_word); if (operand_inst && SpvOpSampledImage == operand_inst->opcode()) { RegisterSampledImageConsumer(operand_word, inst.result_id); } } } } std::vector ValidationState_t::getSampledImageConsumers( uint32_t sampled_image_id) const { std::vector result; auto iter = sampled_image_consumers_.find(sampled_image_id); if (iter != sampled_image_consumers_.end()) { result = iter->second; } return result; } void ValidationState_t::RegisterSampledImageConsumer(uint32_t sampled_image_id, uint32_t consumer_id) { sampled_image_consumers_[sampled_image_id].push_back(consumer_id); } uint32_t ValidationState_t::getIdBound() const { return id_bound_; } void ValidationState_t::setIdBound(const uint32_t bound) { id_bound_ = bound; } bool ValidationState_t::RegisterUniqueTypeDeclaration( const spv_parsed_instruction_t& inst) { std::vector key; key.push_back(static_cast(inst.opcode)); for (int index = 0; index < inst.num_operands; ++index) { const spv_parsed_operand_t& operand = inst.operands[index]; if (operand.type == SPV_OPERAND_TYPE_RESULT_ID) continue; const int words_begin = operand.offset; const int words_end = words_begin + operand.num_words; assert(words_end <= static_cast(inst.num_words)); key.insert(key.end(), inst.words + words_begin, inst.words + words_end); } return unique_type_declarations_.insert(std::move(key)).second; } uint32_t ValidationState_t::GetTypeId(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); return inst->type_id(); } uint32_t ValidationState_t::GetComponentType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); switch (inst->opcode()) { case SpvOpTypeFloat: case SpvOpTypeInt: case SpvOpTypeBool: return id; case SpvOpTypeVector: return inst->word(2); case SpvOpTypeMatrix: return GetComponentType(inst->word(2)); default: break; } if (inst->type_id()) return GetComponentType(inst->type_id()); assert(0); return 0; } uint32_t ValidationState_t::GetDimension(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); switch (inst->opcode()) { case SpvOpTypeFloat: case SpvOpTypeInt: case SpvOpTypeBool: return 1; case SpvOpTypeVector: case SpvOpTypeMatrix: return inst->word(3); default: break; } if (inst->type_id()) return GetDimension(inst->type_id()); assert(0); return 0; } uint32_t ValidationState_t::GetBitWidth(uint32_t id) const { const uint32_t component_type_id = GetComponentType(id); const Instruction* inst = FindDef(component_type_id); assert(inst); if (inst->opcode() == SpvOpTypeFloat || inst->opcode() == SpvOpTypeInt) return inst->word(2); if (inst->opcode() == SpvOpTypeBool) return 1; assert(0); return 0; } bool ValidationState_t::IsFloatScalarType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); return inst->opcode() == SpvOpTypeFloat; } bool ValidationState_t::IsFloatVectorType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); if (inst->opcode() == SpvOpTypeVector) { return IsFloatScalarType(GetComponentType(id)); } return false; } bool ValidationState_t::IsIntScalarType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); return inst->opcode() == SpvOpTypeInt; } bool ValidationState_t::IsIntVectorType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); if (inst->opcode() == SpvOpTypeVector) { return IsIntScalarType(GetComponentType(id)); } return false; } bool ValidationState_t::IsUnsignedIntScalarType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); return inst->opcode() == SpvOpTypeInt && inst->word(3) == 0; } bool ValidationState_t::IsUnsignedIntVectorType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); if (inst->opcode() == SpvOpTypeVector) { return IsUnsignedIntScalarType(GetComponentType(id)); } return false; } bool ValidationState_t::IsSignedIntScalarType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); return inst->opcode() == SpvOpTypeInt && inst->word(3) == 1; } bool ValidationState_t::IsSignedIntVectorType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); if (inst->opcode() == SpvOpTypeVector) { return IsSignedIntScalarType(GetComponentType(id)); } return false; } bool ValidationState_t::IsBoolScalarType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); return inst->opcode() == SpvOpTypeBool; } bool ValidationState_t::IsBoolVectorType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); if (inst->opcode() == SpvOpTypeVector) { return IsBoolScalarType(GetComponentType(id)); } return false; } bool ValidationState_t::IsFloatMatrixType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); if (inst->opcode() == SpvOpTypeMatrix) { return IsFloatScalarType(GetComponentType(id)); } return false; } bool ValidationState_t::GetMatrixTypeInfo(uint32_t id, uint32_t* num_rows, uint32_t* num_cols, uint32_t* column_type, uint32_t* component_type) const { if (!id) return false; const Instruction* mat_inst = FindDef(id); assert(mat_inst); if (mat_inst->opcode() != SpvOpTypeMatrix) return false; const uint32_t vec_type = mat_inst->word(2); const Instruction* vec_inst = FindDef(vec_type); assert(vec_inst); if (vec_inst->opcode() != SpvOpTypeVector) { assert(0); return false; } *num_cols = mat_inst->word(3); *num_rows = vec_inst->word(3); *column_type = mat_inst->word(2); *component_type = vec_inst->word(2); return true; } bool ValidationState_t::GetStructMemberTypes( uint32_t struct_type_id, std::vector* member_types) const { member_types->clear(); if (!struct_type_id) return false; const Instruction* inst = FindDef(struct_type_id); assert(inst); if (inst->opcode() != SpvOpTypeStruct) return false; *member_types = std::vector(inst->words().cbegin() + 2, inst->words().cend()); if (member_types->empty()) return false; return true; } bool ValidationState_t::IsPointerType(uint32_t id) const { const Instruction* inst = FindDef(id); assert(inst); return inst->opcode() == SpvOpTypePointer; } bool ValidationState_t::GetPointerTypeInfo(uint32_t id, uint32_t* data_type, uint32_t* storage_class) const { if (!id) return false; const Instruction* inst = FindDef(id); assert(inst); if (inst->opcode() != SpvOpTypePointer) return false; *storage_class = inst->word(2); *data_type = inst->word(3); return true; } uint32_t ValidationState_t::GetOperandTypeId( const spv_parsed_instruction_t* inst, size_t operand_index) const { assert(operand_index < inst->num_operands); const spv_parsed_operand_t& operand = inst->operands[operand_index]; assert(operand.num_words == 1); return GetTypeId(inst->words[operand.offset]); } } // namespace libspirv