// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "binary.h" #include #include #include #include #include #include #include #include "assembly_grammar.h" #include "diagnostic.h" #include "ext_inst.h" #include "opcode.h" #include "operand.h" #include "spirv/1.2/spirv.h" #include "spirv_constant.h" #include "spirv_endian.h" spv_result_t spvBinaryHeaderGet(const spv_const_binary binary, const spv_endianness_t endian, spv_header_t* pHeader) { if (!binary->code) return SPV_ERROR_INVALID_BINARY; if (binary->wordCount < SPV_INDEX_INSTRUCTION) return SPV_ERROR_INVALID_BINARY; if (!pHeader) return SPV_ERROR_INVALID_POINTER; // TODO: Validation checking? pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian); pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian); pHeader->generator = spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian); pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian); pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian); pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION]; return SPV_SUCCESS; } namespace { // A SPIR-V binary parser. A parser instance communicates detailed parse // results via callbacks. class Parser { public: // The user_data value is provided to the callbacks as context. Parser(const spv_const_context context, void* user_data, spv_parsed_header_fn_t parsed_header_fn, spv_parsed_instruction_fn_t parsed_instruction_fn) : grammar_(context), consumer_(context->consumer), user_data_(user_data), parsed_header_fn_(parsed_header_fn), parsed_instruction_fn_(parsed_instruction_fn) {} // Parses the specified binary SPIR-V module, issuing callbacks on a parsed // header and for each parsed instruction. Returns SPV_SUCCESS on success. // Otherwise returns an error code and issues a diagnostic. spv_result_t parse(const uint32_t* words, size_t num_words, spv_diagnostic* diagnostic); private: // All remaining methods work on the current module parse state. // Like the parse method, but works on the current module parse state. spv_result_t parseModule(); // Parses an instruction at the current position of the binary. Assumes // the header has been parsed, the endian has been set, and the word index is // still in range. Advances the parsing position past the instruction, and // updates other parsing state for the current module. // On success, returns SPV_SUCCESS and issues the parsed-instruction callback. // On failure, returns an error code and issues a diagnostic. spv_result_t parseInstruction(); // Parses an instruction operand with the given type, for an instruction // starting at inst_offset words into the SPIR-V binary. // If the SPIR-V binary is the same endianness as the host, then the // endian_converted_inst_words parameter is ignored. Otherwise, this method // appends the words for this operand, converted to host native endianness, // to the end of endian_converted_inst_words. This method also updates the // expected_operands parameter, and the scalar members of the inst parameter. // On success, returns SPV_SUCCESS, advances past the operand, and pushes a // new entry on to the operands vector. Otherwise returns an error code and // issues a diagnostic. spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst, const spv_operand_type_t type, std::vector* endian_converted_inst_words, std::vector* operands, spv_operand_pattern_t* expected_operands); // Records the numeric type for an operand according to the type information // associated with the given non-zero type Id. This can fail if the type Id // is not a type Id, or if the type Id does not reference a scalar numeric // type. On success, return SPV_SUCCESS and populates the num_words, // number_kind, and number_bit_width fields of parsed_operand. spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand, uint32_t type_id); // Records the number type for an instruction at the given offset, if that // instruction generates a type. For types that aren't scalar numbers, // record something with number kind SPV_NUMBER_NONE. void recordNumberType(size_t inst_offset, const spv_parsed_instruction_t* inst); // Returns a diagnostic stream object initialized with current position in // the input stream, and for the given error code. Any data written to the // returned object will be propagated to the current parse's diagnostic // object. libspirv::DiagnosticStream diagnostic(spv_result_t error) { return libspirv::DiagnosticStream({0, 0, _.word_index}, consumer_, error); } // Returns a diagnostic stream object with the default parse error code. libspirv::DiagnosticStream diagnostic() { // The default failure for parsing is invalid binary. return diagnostic(SPV_ERROR_INVALID_BINARY); } // Issues a diagnostic describing an exhaustion of input condition when // trying to decode an instruction operand, and returns // SPV_ERROR_INVALID_BINARY. spv_result_t exhaustedInputDiagnostic(size_t inst_offset, SpvOp opcode, spv_operand_type_t type) { return diagnostic() << "End of input reached while decoding Op" << spvOpcodeString(opcode) << " starting at word " << inst_offset << ((_.word_index < _.num_words) ? ": truncated " : ": missing ") << spvOperandTypeStr(type) << " operand at word offset " << _.word_index - inst_offset << "."; } // Returns the endian-corrected word at the current position. uint32_t peek() const { return peekAt(_.word_index); } // Returns the endian-corrected word at the given position. uint32_t peekAt(size_t index) const { assert(index < _.num_words); return spvFixWord(_.words[index], _.endian); } // Data members const libspirv::AssemblyGrammar grammar_; // SPIR-V syntax utility. const spvtools::MessageConsumer& consumer_; // Message consumer callback. void* const user_data_; // Context for the callbacks const spv_parsed_header_fn_t parsed_header_fn_; // Parsed header callback const spv_parsed_instruction_fn_t parsed_instruction_fn_; // Parsed instruction callback // Describes the format of a typed literal number. struct NumberType { spv_number_kind_t type; uint32_t bit_width; }; // The state used to parse a single SPIR-V binary module. struct State { State(const uint32_t* words_arg, size_t num_words_arg, spv_diagnostic* diagnostic_arg) : words(words_arg), num_words(num_words_arg), diagnostic(diagnostic_arg), word_index(0), endian(), requires_endian_conversion(false) {} State() : State(0, 0, nullptr) {} const uint32_t* words; // Words in the binary SPIR-V module. size_t num_words; // Number of words in the module. spv_diagnostic* diagnostic; // Where diagnostics go. size_t word_index; // The current position in words. spv_endianness_t endian; // The endianness of the binary. // Is the SPIR-V binary in a different endiannes from the host native // endianness? bool requires_endian_conversion; // Maps a result ID to its type ID. By convention: // - a result ID that is a type definition maps to itself. // - a result ID without a type maps to 0. (E.g. for OpLabel) std::unordered_map id_to_type_id; // Maps a type ID to its number type description. std::unordered_map type_id_to_number_type_info; // Maps an ExtInstImport id to the extended instruction type. std::unordered_map import_id_to_ext_inst_type; } _; }; spv_result_t Parser::parse(const uint32_t* words, size_t num_words, spv_diagnostic* diagnostic_arg) { _ = State(words, num_words, diagnostic_arg); const spv_result_t result = parseModule(); // Clear the module state. The tables might be big. _ = State(); return result; } spv_result_t Parser::parseModule() { if (!_.words) return diagnostic() << "Missing module."; if (_.num_words < SPV_INDEX_INSTRUCTION) return diagnostic() << "Module has incomplete header: only " << _.num_words << " words instead of " << SPV_INDEX_INSTRUCTION; // Check the magic number and detect the module's endianness. spv_const_binary_t binary{_.words, _.num_words}; if (spvBinaryEndianness(&binary, &_.endian)) { return diagnostic() << "Invalid SPIR-V magic number '" << std::hex << _.words[0] << "'."; } _.requires_endian_conversion = !spvIsHostEndian(_.endian); // Process the header. spv_header_t header; if (spvBinaryHeaderGet(&binary, _.endian, &header)) { // It turns out there is no way to trigger this error since the only // failure cases are already handled above, with better messages. return diagnostic(SPV_ERROR_INTERNAL) << "Internal error: unhandled header parse failure"; } if (parsed_header_fn_) { if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic, header.version, header.generator, header.bound, header.schema)) { return error; } } // Process the instructions. _.word_index = SPV_INDEX_INSTRUCTION; while (_.word_index < _.num_words) if (auto error = parseInstruction()) return error; // Running off the end should already have been reported earlier. assert(_.word_index == _.num_words); return SPV_SUCCESS; } spv_result_t Parser::parseInstruction() { // The zero values for all members except for opcode are the // correct initial values. spv_parsed_instruction_t inst = {}; const uint32_t first_word = peek(); // TODO(dneto): If it's too expensive to construct the following "words" // and "operands" vectors for each instruction, each instruction, then make // them class data members instead, and clear them here. // If the module's endianness is different from the host native endianness, // then converted_words contains the the endian-translated words in the // instruction. std::vector endian_converted_words = {first_word}; if (_.requires_endian_conversion) { // Most instructions have fewer than 25 words. endian_converted_words.reserve(25); } // After a successful parse of the instruction, the inst.operands member // will point to this vector's storage. std::vector operands; // Most instructions have fewer than 25 logical operands. operands.reserve(25); assert(_.word_index < _.num_words); // Decompose and check the first word. uint16_t inst_word_count = 0; spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode); if (inst_word_count < 1) { return diagnostic() << "Invalid instruction word count: " << inst_word_count; } spv_opcode_desc opcode_desc; if (grammar_.lookupOpcode(static_cast(inst.opcode), &opcode_desc)) return diagnostic() << "Invalid opcode: " << inst.opcode; // Advance past the opcode word. But remember the of the start // of the instruction. const size_t inst_offset = _.word_index; _.word_index++; // Maintains the ordered list of expected operand types. // For many instructions we only need the {numTypes, operandTypes} // entries in opcode_desc. However, sometimes we need to modify // the list as we parse the operands. This occurs when an operand // has its own logical operands (such as the LocalSize operand for // ExecutionMode), or for extended instructions that may have their // own operands depending on the selected extended instruction. spv_operand_pattern_t expected_operands( opcode_desc->operandTypes, opcode_desc->operandTypes + opcode_desc->numTypes); while (_.word_index < inst_offset + inst_word_count) { const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset); if (expected_operands.empty()) { return diagnostic() << "Invalid instruction Op" << opcode_desc->name << " starting at word " << inst_offset << ": expected no more operands after " << inst_word_index << " words, but stated word count is " << inst_word_count << "."; } spv_operand_type_t type = spvTakeFirstMatchableOperand(&expected_operands); if (auto error = parseOperand(inst_offset, &inst, type, &endian_converted_words, &operands, &expected_operands)) { return error; } } if (!expected_operands.empty() && !spvOperandIsOptional(expected_operands.front())) { return diagnostic() << "End of input reached while decoding Op" << opcode_desc->name << " starting at word " << inst_offset << ": expected more operands after " << inst_word_count << " words."; } if ((inst_offset + inst_word_count) != _.word_index) { return diagnostic() << "Invalid word count: Op" << opcode_desc->name << " starting at word " << inst_offset << " says it has " << inst_word_count << " words, but found " << _.word_index - inst_offset << " words instead."; } // Check the computed length of the endian-converted words vector against // the declared number of words in the instruction. If endian conversion // is required, then they should match. If no endian conversion was // performed, then the vector only contains the initial opcode/word-count // word. assert(!_.requires_endian_conversion || (inst_word_count == endian_converted_words.size())); assert(_.requires_endian_conversion || (endian_converted_words.size() == 1)); recordNumberType(inst_offset, &inst); if (_.requires_endian_conversion) { // We must wait until here to set this pointer, because the vector might // have been be resized while we accumulated its elements. inst.words = endian_converted_words.data(); } else { // If no conversion is required, then just point to the underlying binary. // This saves time and space. inst.words = _.words + inst_offset; } inst.num_words = inst_word_count; // We must wait until here to set this pointer, because the vector might // have been be resized while we accumulated its elements. inst.operands = operands.data(); inst.num_operands = uint16_t(operands.size()); // Issue the callback. The callee should know that all the storage in inst // is transient, and will disappear immediately afterward. if (parsed_instruction_fn_) { if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error; } return SPV_SUCCESS; } spv_result_t Parser::parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst, const spv_operand_type_t type, std::vector* words, std::vector* operands, spv_operand_pattern_t* expected_operands) { const SpvOp opcode = static_cast(inst->opcode); // We'll fill in this result as we go along. spv_parsed_operand_t parsed_operand; parsed_operand.offset = uint16_t(_.word_index - inst_offset); // Most operands occupy one word. This might be be adjusted later. parsed_operand.num_words = 1; // The type argument is the one used by the grammar to parse the instruction. // But it can exposes internal parser details such as whether an operand is // optional or actually represents a variable-length sequence of operands. // The resulting type should be adjusted to avoid those internal details. // In most cases, the resulting operand type is the same as the grammar type. parsed_operand.type = type; // Assume non-numeric values. This will be updated for literal numbers. parsed_operand.number_kind = SPV_NUMBER_NONE; parsed_operand.number_bit_width = 0; if (_.word_index >= _.num_words) return exhaustedInputDiagnostic(inst_offset, opcode, type); const uint32_t word = peek(); // Do the words in this operand have to be converted to native endianness? // True for all but literal strings. bool convert_operand_endianness = true; switch (type) { case SPV_OPERAND_TYPE_TYPE_ID: if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0"; inst->type_id = word; break; case SPV_OPERAND_TYPE_RESULT_ID: if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0"; inst->result_id = word; // Save the result ID to type ID mapping. // In the grammar, type ID always appears before result ID. if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end()) return diagnostic(SPV_ERROR_INVALID_ID) << "Id " << inst->result_id << " is defined more than once"; // Record it. // A regular value maps to its type. Some instructions (e.g. OpLabel) // have no type Id, and will map to 0. The result Id for a // type-generating instruction (e.g. OpTypeInt) maps to itself. _.id_to_type_id[inst->result_id] = spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id; break; case SPV_OPERAND_TYPE_ID: case SPV_OPERAND_TYPE_OPTIONAL_ID: if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0"; parsed_operand.type = SPV_OPERAND_TYPE_ID; if (opcode == SpvOpExtInst && parsed_operand.offset == 3) { // The current word is the extended instruction set Id. // Set the extended instruction set type for the current instruction. auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word); if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) { return diagnostic(SPV_ERROR_INVALID_ID) << "OpExtInst set Id " << word << " does not reference an OpExtInstImport result Id"; } inst->ext_inst_type = ext_inst_type_iter->second; } break; case SPV_OPERAND_TYPE_SCOPE_ID: case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID: // Check for trivially invalid values. The operand descriptions already // have the word "ID" in them. if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0"; break; case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: { assert(SpvOpExtInst == opcode); assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE); spv_ext_inst_desc ext_inst; if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst)) return diagnostic() << "Invalid extended instruction number: " << word; spvPrependOperandTypes(ext_inst->operandTypes, expected_operands); } break; case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: { assert(SpvOpSpecConstantOp == opcode); if (grammar_.lookupSpecConstantOpcode(SpvOp(word))) { return diagnostic() << "Invalid " << spvOperandTypeStr(type) << ": " << word; } spv_opcode_desc opcode_entry = nullptr; if (grammar_.lookupOpcode(SpvOp(word), &opcode_entry)) { return diagnostic(SPV_ERROR_INTERNAL) << "OpSpecConstant opcode table out of sync"; } // OpSpecConstant opcodes must have a type and result. We've already // processed them, so skip them when preparing to parse the other // operants for the opcode. assert(opcode_entry->hasType); assert(opcode_entry->hasResult); assert(opcode_entry->numTypes >= 2); spvPrependOperandTypes(opcode_entry->operandTypes + 2, expected_operands); } break; case SPV_OPERAND_TYPE_LITERAL_INTEGER: case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER: // These are regular single-word literal integer operands. // Post-parsing validation should check the range of the parsed value. parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER; // It turns out they are always unsigned integers! parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT; parsed_operand.number_bit_width = 32; break; case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER: case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER: parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER; if (opcode == SpvOpSwitch) { // The literal operands have the same type as the value // referenced by the selector Id. const uint32_t selector_id = peekAt(inst_offset + 1); const auto type_id_iter = _.id_to_type_id.find(selector_id); if (type_id_iter == _.id_to_type_id.end() || type_id_iter->second == 0) { return diagnostic() << "Invalid OpSwitch: selector id " << selector_id << " has no type"; } uint32_t type_id = type_id_iter->second; if (selector_id == type_id) { // Recall that by convention, a result ID that is a type definition // maps to itself. return diagnostic() << "Invalid OpSwitch: selector id " << selector_id << " is a type, not a value"; } if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id)) return error; if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT && parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) { return diagnostic() << "Invalid OpSwitch: selector id " << selector_id << " is not a scalar integer"; } } else { assert(opcode == SpvOpConstant || opcode == SpvOpSpecConstant); // The literal number type is determined by the type Id for the // constant. assert(inst->type_id); if (auto error = setNumericTypeInfoForType(&parsed_operand, inst->type_id)) return error; } break; case SPV_OPERAND_TYPE_LITERAL_STRING: case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: { convert_operand_endianness = false; const char* string = reinterpret_cast(_.words + _.word_index); // Compute the length of the string, but make sure we don't run off the // end of the input. const size_t remaining_input_bytes = sizeof(uint32_t) * (_.num_words - _.word_index); const size_t string_num_content_bytes = spv_strnlen_s(string, remaining_input_bytes); // If there was no terminating null byte, then that's an end-of-input // error. if (string_num_content_bytes == remaining_input_bytes) return exhaustedInputDiagnostic(inst_offset, opcode, type); // Account for null in the word length, so add 1 for null, then add 3 to // make sure we round up. The following is equivalent to: // (string_num_content_bytes + 1 + 3) / 4 const size_t string_num_words = string_num_content_bytes / 4 + 1; // Make sure we can record the word count without overflow. // // This error can't currently be triggered because of validity // checks elsewhere. if (string_num_words > std::numeric_limits::max()) { return diagnostic() << "Literal string is longer than " << std::numeric_limits::max() << " words: " << string_num_words << " words long"; } parsed_operand.num_words = uint16_t(string_num_words); parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING; if (SpvOpExtInstImport == opcode) { // Record the extended instruction type for the ID for this import. // There is only one string literal argument to OpExtInstImport, // so it's sufficient to guard this just on the opcode. const spv_ext_inst_type_t ext_inst_type = spvExtInstImportTypeGet(string); if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) { return diagnostic() << "Invalid extended instruction import '" << string << "'"; } // We must have parsed a valid result ID. It's a condition // of the grammar, and we only accept non-zero result Ids. assert(inst->result_id); _.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type; } } break; case SPV_OPERAND_TYPE_CAPABILITY: case SPV_OPERAND_TYPE_SOURCE_LANGUAGE: case SPV_OPERAND_TYPE_EXECUTION_MODEL: case SPV_OPERAND_TYPE_ADDRESSING_MODEL: case SPV_OPERAND_TYPE_MEMORY_MODEL: case SPV_OPERAND_TYPE_EXECUTION_MODE: case SPV_OPERAND_TYPE_STORAGE_CLASS: case SPV_OPERAND_TYPE_DIMENSIONALITY: case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE: case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE: case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT: case SPV_OPERAND_TYPE_FP_ROUNDING_MODE: case SPV_OPERAND_TYPE_LINKAGE_TYPE: case SPV_OPERAND_TYPE_ACCESS_QUALIFIER: case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER: case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE: case SPV_OPERAND_TYPE_DECORATION: case SPV_OPERAND_TYPE_BUILT_IN: case SPV_OPERAND_TYPE_GROUP_OPERATION: case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS: case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: { // A single word that is a plain enum value. // Map an optional operand type to its corresponding concrete type. if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER) parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER; spv_operand_desc entry; if (grammar_.lookupOperand(type, word, &entry)) { return diagnostic() << "Invalid " << spvOperandTypeStr(parsed_operand.type) << " operand: " << word; } // Prepare to accept operands to this operand, if needed. spvPrependOperandTypes(entry->operandTypes, expected_operands); } break; case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE: case SPV_OPERAND_TYPE_FUNCTION_CONTROL: case SPV_OPERAND_TYPE_LOOP_CONTROL: case SPV_OPERAND_TYPE_IMAGE: case SPV_OPERAND_TYPE_OPTIONAL_IMAGE: case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS: case SPV_OPERAND_TYPE_SELECTION_CONTROL: { // This operand is a mask. // Map an optional operand type to its corresponding concrete type. if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE) parsed_operand.type = SPV_OPERAND_TYPE_IMAGE; else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS) parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS; // Check validity of set mask bits. Also prepare for operands for those // masks if they have any. To get operand order correct, scan from // MSB to LSB since we can only prepend operands to a pattern. // The only case in the grammar where you have more than one mask bit // having an operand is for image operands. See SPIR-V 3.14 Image // Operands. uint32_t remaining_word = word; for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) { if (remaining_word & mask) { spv_operand_desc entry; if (grammar_.lookupOperand(type, mask, &entry)) { return diagnostic() << "Invalid " << spvOperandTypeStr(parsed_operand.type) << " operand: " << word << " has invalid mask component " << mask; } remaining_word ^= mask; spvPrependOperandTypes(entry->operandTypes, expected_operands); } } if (word == 0) { // An all-zeroes mask *might* also be valid. spv_operand_desc entry; if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) { // Prepare for its operands, if any. spvPrependOperandTypes(entry->operandTypes, expected_operands); } } } break; default: return diagnostic() << "Internal error: Unhandled operand type: " << type; } assert(int(SPV_OPERAND_TYPE_FIRST_CONCRETE_TYPE) <= int(parsed_operand.type)); assert(int(SPV_OPERAND_TYPE_LAST_CONCRETE_TYPE) >= int(parsed_operand.type)); operands->push_back(parsed_operand); const size_t index_after_operand = _.word_index + parsed_operand.num_words; // Avoid buffer overrun for the cases where the operand has more than one // word, and where it isn't a string. (Those other cases have already been // handled earlier.) For example, this error can occur for a multi-word // argument to OpConstant, or a multi-word case literal operand for OpSwitch. if (_.num_words < index_after_operand) return exhaustedInputDiagnostic(inst_offset, opcode, type); if (_.requires_endian_conversion) { // Copy instruction words. Translate to native endianness as needed. if (convert_operand_endianness) { const spv_endianness_t endianness = _.endian; std::transform(_.words + _.word_index, _.words + index_after_operand, std::back_inserter(*words), [endianness](const uint32_t raw_word) { return spvFixWord(raw_word, endianness); }); } else { words->insert(words->end(), _.words + _.word_index, _.words + index_after_operand); } } // Advance past the operand. _.word_index = index_after_operand; return SPV_SUCCESS; } spv_result_t Parser::setNumericTypeInfoForType( spv_parsed_operand_t* parsed_operand, uint32_t type_id) { assert(type_id != 0); auto type_info_iter = _.type_id_to_number_type_info.find(type_id); if (type_info_iter == _.type_id_to_number_type_info.end()) { return diagnostic() << "Type Id " << type_id << " is not a type"; } const NumberType& info = type_info_iter->second; if (info.type == SPV_NUMBER_NONE) { // This is a valid type, but for something other than a scalar number. return diagnostic() << "Type Id " << type_id << " is not a scalar numeric type"; } parsed_operand->number_kind = info.type; parsed_operand->number_bit_width = info.bit_width; // Round up the word count. parsed_operand->num_words = static_cast((info.bit_width + 31) / 32); return SPV_SUCCESS; } void Parser::recordNumberType(size_t inst_offset, const spv_parsed_instruction_t* inst) { const SpvOp opcode = static_cast(inst->opcode); if (spvOpcodeGeneratesType(opcode)) { NumberType info = {SPV_NUMBER_NONE, 0}; if (SpvOpTypeInt == opcode) { const bool is_signed = peekAt(inst_offset + 3) != 0; info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT; info.bit_width = peekAt(inst_offset + 2); } else if (SpvOpTypeFloat == opcode) { info.type = SPV_NUMBER_FLOATING; info.bit_width = peekAt(inst_offset + 2); } // The *result* Id of a type generating instruction is the type Id. _.type_id_to_number_type_info[inst->result_id] = info; } } } // anonymous namespace spv_result_t spvBinaryParse(const spv_const_context context, void* user_data, const uint32_t* code, const size_t num_words, spv_parsed_header_fn_t parsed_header, spv_parsed_instruction_fn_t parsed_instruction, spv_diagnostic* diagnostic) { spv_context_t hijack_context = *context; if (diagnostic) { *diagnostic = nullptr; libspirv::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic); } Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction); return parser.parse(code, num_words, diagnostic); } // TODO(dneto): This probably belongs in text.cpp since that's the only place // that a spv_binary_t value is created. void spvBinaryDestroy(spv_binary binary) { if (!binary) return; delete[] binary->code; delete binary; } size_t spv_strnlen_s(const char* str, size_t strsz) { if (!str) return 0; for (size_t i = 0; i < strsz; i++) { if (!str[i]) return i; } return strsz; }