// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Tests for unique type declaration rules validator. #include #include "gmock/gmock.h" #include "test/unit_spirv.h" #include "test/val/val_fixtures.h" namespace spvtools { namespace val { namespace { using ::testing::HasSubstr; using ::testing::Not; using ValidateBitwise = spvtest::ValidateBase; std::string GenerateShaderCode( const std::string& body, const std::string& capabilities_and_extensions = "") { const std::string capabilities = R"( OpCapability Shader OpCapability Int64 OpCapability Float64)"; const std::string after_extension_before_body = R"( OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f32 = OpTypeFloat 32 %u32 = OpTypeInt 32 0 %s32 = OpTypeInt 32 1 %f64 = OpTypeFloat 64 %u64 = OpTypeInt 64 0 %s64 = OpTypeInt 64 1 %boolvec2 = OpTypeVector %bool 2 %s32vec2 = OpTypeVector %s32 2 %u32vec2 = OpTypeVector %u32 2 %u64vec2 = OpTypeVector %u64 2 %f32vec2 = OpTypeVector %f32 2 %f64vec2 = OpTypeVector %f64 2 %boolvec3 = OpTypeVector %bool 3 %u32vec3 = OpTypeVector %u32 3 %u64vec3 = OpTypeVector %u64 3 %s32vec3 = OpTypeVector %s32 3 %f32vec3 = OpTypeVector %f32 3 %f64vec3 = OpTypeVector %f64 3 %boolvec4 = OpTypeVector %bool 4 %u32vec4 = OpTypeVector %u32 4 %u64vec4 = OpTypeVector %u64 4 %s32vec4 = OpTypeVector %s32 4 %f32vec4 = OpTypeVector %f32 4 %f64vec4 = OpTypeVector %f64 4 %f32_0 = OpConstant %f32 0 %f32_1 = OpConstant %f32 1 %f32_2 = OpConstant %f32 2 %f32_3 = OpConstant %f32 3 %f32_4 = OpConstant %f32 4 %s32_0 = OpConstant %s32 0 %s32_1 = OpConstant %s32 1 %s32_2 = OpConstant %s32 2 %s32_3 = OpConstant %s32 3 %s32_4 = OpConstant %s32 4 %s32_m1 = OpConstant %s32 -1 %u32_0 = OpConstant %u32 0 %u32_1 = OpConstant %u32 1 %u32_2 = OpConstant %u32 2 %u32_3 = OpConstant %u32 3 %u32_4 = OpConstant %u32 4 %f64_0 = OpConstant %f64 0 %f64_1 = OpConstant %f64 1 %f64_2 = OpConstant %f64 2 %f64_3 = OpConstant %f64 3 %f64_4 = OpConstant %f64 4 %s64_0 = OpConstant %s64 0 %s64_1 = OpConstant %s64 1 %s64_2 = OpConstant %s64 2 %s64_3 = OpConstant %s64 3 %s64_4 = OpConstant %s64 4 %s64_m1 = OpConstant %s64 -1 %u64_0 = OpConstant %u64 0 %u64_1 = OpConstant %u64 1 %u64_2 = OpConstant %u64 2 %u64_3 = OpConstant %u64 3 %u64_4 = OpConstant %u64 4 %u32vec2_01 = OpConstantComposite %u32vec2 %u32_0 %u32_1 %u32vec2_12 = OpConstantComposite %u32vec2 %u32_1 %u32_2 %u32vec3_012 = OpConstantComposite %u32vec3 %u32_0 %u32_1 %u32_2 %u32vec3_123 = OpConstantComposite %u32vec3 %u32_1 %u32_2 %u32_3 %u32vec4_0123 = OpConstantComposite %u32vec4 %u32_0 %u32_1 %u32_2 %u32_3 %u32vec4_1234 = OpConstantComposite %u32vec4 %u32_1 %u32_2 %u32_3 %u32_4 %s32vec2_01 = OpConstantComposite %s32vec2 %s32_0 %s32_1 %s32vec2_12 = OpConstantComposite %s32vec2 %s32_1 %s32_2 %s32vec3_012 = OpConstantComposite %s32vec3 %s32_0 %s32_1 %s32_2 %s32vec3_123 = OpConstantComposite %s32vec3 %s32_1 %s32_2 %s32_3 %s32vec4_0123 = OpConstantComposite %s32vec4 %s32_0 %s32_1 %s32_2 %s32_3 %s32vec4_1234 = OpConstantComposite %s32vec4 %s32_1 %s32_2 %s32_3 %s32_4 %f32vec2_01 = OpConstantComposite %f32vec2 %f32_0 %f32_1 %f32vec2_12 = OpConstantComposite %f32vec2 %f32_1 %f32_2 %f32vec3_012 = OpConstantComposite %f32vec3 %f32_0 %f32_1 %f32_2 %f32vec3_123 = OpConstantComposite %f32vec3 %f32_1 %f32_2 %f32_3 %f32vec4_0123 = OpConstantComposite %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3 %f32vec4_1234 = OpConstantComposite %f32vec4 %f32_1 %f32_2 %f32_3 %f32_4 %main = OpFunction %void None %func %main_entry = OpLabel)"; const std::string after_body = R"( OpReturn OpFunctionEnd)"; return capabilities + capabilities_and_extensions + after_extension_before_body + body + after_body; } TEST_F(ValidateBitwise, ShiftAllSuccess) { const std::string body = R"( %val1 = OpShiftRightLogical %u64 %u64_1 %s32_2 %val2 = OpShiftRightArithmetic %s32vec2 %s32vec2_12 %s32vec2_12 %val3 = OpShiftLeftLogical %u32vec2 %s32vec2_12 %u32vec2_12 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateBitwise, OpShiftRightLogicalWrongResultType) { const std::string body = R"( %val1 = OpShiftRightLogical %bool %u64_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar or vector type as Result Type: " "ShiftRightLogical")); } TEST_F(ValidateBitwise, OpShiftRightLogicalBaseNotInt) { const std::string body = R"( %val1 = OpShiftRightLogical %u32 %f32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Base to be int scalar or vector: ShiftRightLogical")); } TEST_F(ValidateBitwise, OpShiftRightLogicalBaseWrongDimension) { const std::string body = R"( %val1 = OpShiftRightLogical %u32 %u32vec2_12 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Base to have the same dimension as Result Type: " "ShiftRightLogical")); } TEST_F(ValidateBitwise, OpShiftRightLogicalBaseWrongBitWidth) { const std::string body = R"( %val1 = OpShiftRightLogical %u64 %u32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Base to have the same bit width as Result Type: " "ShiftRightLogical")); } TEST_F(ValidateBitwise, OpShiftRightLogicalShiftNotInt) { const std::string body = R"( %val1 = OpShiftRightLogical %u32 %u32_1 %f32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Shift to be int scalar or vector: ShiftRightLogical")); } TEST_F(ValidateBitwise, OpShiftRightLogicalShiftWrongDimension) { const std::string body = R"( %val1 = OpShiftRightLogical %u32 %u32_1 %s32vec2_12 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Shift to have the same dimension as Result Type: " "ShiftRightLogical")); } TEST_F(ValidateBitwise, LogicAllSuccess) { const std::string body = R"( %val1 = OpBitwiseOr %u64 %u64_1 %s64_0 %val2 = OpBitwiseAnd %s64 %s64_1 %u64_0 %val3 = OpBitwiseXor %s32vec2 %s32vec2_12 %u32vec2_01 %val4 = OpNot %s32vec2 %u32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateBitwise, OpBitwiseAndWrongResultType) { const std::string body = R"( %val1 = OpBitwiseAnd %bool %u64_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected int scalar or vector type as Result Type: BitwiseAnd")); } TEST_F(ValidateBitwise, OpBitwiseAndLeftNotInt) { const std::string body = R"( %val1 = OpBitwiseAnd %u32 %f32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar or vector as operand: BitwiseAnd " "operand index 2")); } TEST_F(ValidateBitwise, OpBitwiseAndRightNotInt) { const std::string body = R"( %val1 = OpBitwiseAnd %u32 %u32_1 %f32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar or vector as operand: BitwiseAnd " "operand index 3")); } TEST_F(ValidateBitwise, OpBitwiseAndLeftWrongDimension) { const std::string body = R"( %val1 = OpBitwiseAnd %u32 %u32vec2_12 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected operands to have the same dimension as Result Type: " "BitwiseAnd operand index 2")); } TEST_F(ValidateBitwise, OpBitwiseAndRightWrongDimension) { const std::string body = R"( %val1 = OpBitwiseAnd %u32 %s32_2 %u32vec2_12 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected operands to have the same dimension as Result Type: " "BitwiseAnd operand index 3")); } TEST_F(ValidateBitwise, OpBitwiseAndLeftWrongBitWidth) { const std::string body = R"( %val1 = OpBitwiseAnd %u64 %u32_1 %s64_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected operands to have the same bit width as Result Type: " "BitwiseAnd operand index 2")); } TEST_F(ValidateBitwise, OpBitwiseAndRightWrongBitWidth) { const std::string body = R"( %val1 = OpBitwiseAnd %u64 %u64_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected operands to have the same bit width as Result Type: " "BitwiseAnd operand index 3")); } TEST_F(ValidateBitwise, OpBitFieldInsertSuccess) { const std::string body = R"( %val1 = OpBitFieldInsert %u64 %u64_1 %u64_2 %s32_1 %s32_2 %val2 = OpBitFieldInsert %s32vec2 %s32vec2_12 %s32vec2_12 %s32_1 %u32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateBitwise, OpBitFieldInsertVulkanSuccess) { const std::string body = R"( %val1 = OpBitFieldInsert %u32 %u32_1 %u32_2 %s32_1 %s32_2 %val2 = OpBitFieldInsert %s32vec2 %s32vec2_12 %s32vec2_12 %s32_1 %u32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateBitwise, OpBitFieldInsertWrongResultType) { const std::string body = R"( %val1 = OpBitFieldInsert %bool %u64_1 %u64_2 %s32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Base Type to be equal to Result Type: BitFieldInsert")); } TEST_F(ValidateBitwise, OpBitFieldInsertWrongBaseType) { const std::string body = R"( %val1 = OpBitFieldInsert %u64 %s64_1 %u64_2 %s32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Base Type to be equal to Result Type: BitFieldInsert")); } TEST_F(ValidateBitwise, OpBitFieldInsertWrongInsertType) { const std::string body = R"( %val1 = OpBitFieldInsert %u64 %u64_1 %s64_2 %s32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Insert Type to be equal to Result Type: BitFieldInsert")); } TEST_F(ValidateBitwise, OpBitFieldInsertOffsetNotInt) { const std::string body = R"( %val1 = OpBitFieldInsert %u64 %u64_1 %u64_2 %f32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Offset Type to be int scalar: BitFieldInsert")); } TEST_F(ValidateBitwise, OpBitFieldInsertCountNotInt) { const std::string body = R"( %val1 = OpBitFieldInsert %u64 %u64_1 %u64_2 %u32_1 %f32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Count Type to be int scalar: BitFieldInsert")); } TEST_F(ValidateBitwise, OpBitFieldInsertNot32Vulkan) { const std::string body = R"( %val1 = OpBitFieldInsert %u64 %u64_1 %u64_2 %s32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-Base-04781")); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected 32-bit int type for Base operand: BitFieldInsert")); } TEST_F(ValidateBitwise, OpBitFieldSExtractSuccess) { const std::string body = R"( %val1 = OpBitFieldSExtract %u64 %u64_1 %s32_1 %s32_2 %val2 = OpBitFieldSExtract %s32vec2 %s32vec2_12 %s32_1 %u32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateBitwise, OpBitFieldSExtractVulkanSuccess) { const std::string body = R"( %val1 = OpBitFieldSExtract %u32 %u32_1 %s32_1 %s32_2 %val2 = OpBitFieldSExtract %s32vec2 %s32vec2_12 %s32_1 %u32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateBitwise, OpBitFieldSExtractWrongResultType) { const std::string body = R"( %val1 = OpBitFieldSExtract %bool %u64_1 %s32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Base Type to be equal to Result Type: BitFieldSExtract")); } TEST_F(ValidateBitwise, OpBitFieldSExtractWrongBaseType) { const std::string body = R"( %val1 = OpBitFieldSExtract %u64 %s64_1 %s32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Base Type to be equal to Result Type: BitFieldSExtract")); } TEST_F(ValidateBitwise, OpBitFieldSExtractOffsetNotInt) { const std::string body = R"( %val1 = OpBitFieldSExtract %u64 %u64_1 %f32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Offset Type to be int scalar: BitFieldSExtract")); } TEST_F(ValidateBitwise, OpBitFieldSExtractCountNotInt) { const std::string body = R"( %val1 = OpBitFieldSExtract %u64 %u64_1 %u32_1 %f32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Count Type to be int scalar: BitFieldSExtract")); } TEST_F(ValidateBitwise, OpBitFieldSExtractNot32Vulkan) { const std::string body = R"( %val1 = OpBitFieldSExtract %u64 %u64_1 %s32_1 %s32_2 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-Base-04781")); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected 32-bit int type for Base operand: BitFieldSExtract")); } TEST_F(ValidateBitwise, OpBitReverseSuccess) { const std::string body = R"( %val1 = OpBitReverse %u64 %u64_1 %val2 = OpBitReverse %s32vec2 %s32vec2_12 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateBitwise, OpBitReverseVulkanSuccess) { const std::string body = R"( %val1 = OpBitReverse %u32 %u32_1 %val2 = OpBitReverse %s32vec2 %s32vec2_12 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateBitwise, OpBitReverseWrongResultType) { const std::string body = R"( %val1 = OpBitReverse %bool %u64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Base Type to be equal to Result Type: BitReverse")); } TEST_F(ValidateBitwise, OpBitReverseWrongBaseType) { const std::string body = R"( %val1 = OpBitReverse %u64 %s64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Base Type to be equal to Result Type: BitReverse")); } TEST_F(ValidateBitwise, OpBitReverseNot32Vulkan) { const std::string body = R"( %val1 = OpBitReverse %u64 %u64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-Base-04781")); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected 32-bit int type for Base operand: BitReverse")); } TEST_F(ValidateBitwise, OpBitCountSuccess) { const std::string body = R"( %val1 = OpBitCount %s32 %u64_1 %val2 = OpBitCount %u32vec2 %s32vec2_12 %val3 = OpBitCount %s64 %s64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateBitwise, OpBitCountVulkanSuccess) { const std::string body = R"( %val1 = OpBitCount %s32 %u32_1 %val2 = OpBitCount %u32vec2 %s32vec2_12 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0)); } TEST_F(ValidateBitwise, OpBitCountWrongResultType) { const std::string body = R"( %val1 = OpBitCount %bool %u64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected int scalar or vector type as Result Type: BitCount")); } TEST_F(ValidateBitwise, OpBitCountBaseNotInt) { const std::string body = R"( %val1 = OpBitCount %u32 %f64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-Base-04781")); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected int scalar or vector type for Base operand: BitCount")); } TEST_F(ValidateBitwise, OpBitCountBaseWrongDimension) { const std::string body = R"( %val1 = OpBitCount %u32 %u32vec2_12 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Base dimension to be equal to Result Type dimension: " "BitCount")); } TEST_F(ValidateBitwise, OpBitCountNot32Vulkan) { const std::string body = R"( %val1 = OpBitCount %s64 %s64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str(), SPV_ENV_VULKAN_1_0); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-Base-04781")); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected 32-bit int type for Base operand: BitCount")); } TEST_F(ValidateBitwise, OpBitCountPointer) { const std::string body = R"( OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint GLCompute %main "main" OpExecutionMode %main LocalSize 1 1 1 %void = OpTypeVoid %int = OpTypeInt 32 0 %ptr_int = OpTypePointer Function %int %void_fn = OpTypeFunction %void %main = OpFunction %void None %void_fn %entry = OpLabel %var = OpVariable %ptr_int Function %count = OpBitCount %int %var OpReturn OpFunctionEnd )"; CompileSuccessfully(body); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected int scalar or vector type for Base operand: BitCount")); } } // namespace } // namespace val } // namespace spvtools