// Copyright (c) 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/fuzz/replayer.h" #include #include #include "source/fuzz/counter_overflow_id_source.h" #include "source/fuzz/fact_manager/fact_manager.h" #include "source/fuzz/protobufs/spirvfuzz_protobufs.h" #include "source/fuzz/transformation.h" #include "source/fuzz/transformation_context.h" #include "source/opt/build_module.h" #include "source/util/make_unique.h" namespace spvtools { namespace fuzz { Replayer::Replayer(spv_target_env target_env, bool validate_during_replay, spv_validator_options validator_options) : target_env_(target_env), validate_during_replay_(validate_during_replay), validator_options_(validator_options) {} Replayer::~Replayer() = default; void Replayer::SetMessageConsumer(MessageConsumer consumer) { consumer_ = std::move(consumer); } Replayer::ReplayerResultStatus Replayer::Run( const std::vector& binary_in, const protobufs::FactSequence& initial_facts, const protobufs::TransformationSequence& transformation_sequence_in, uint32_t num_transformations_to_apply, uint32_t first_overflow_id, std::vector* binary_out, protobufs::TransformationSequence* transformation_sequence_out) const { // Check compatibility between the library version being linked with and the // header files being used. GOOGLE_PROTOBUF_VERIFY_VERSION; if (num_transformations_to_apply > static_cast(transformation_sequence_in.transformation_size())) { consumer_(SPV_MSG_ERROR, nullptr, {}, "The number of transformations to be replayed must not " "exceed the size of the transformation sequence."); return Replayer::ReplayerResultStatus::kTooManyTransformationsRequested; } spvtools::SpirvTools tools(target_env_); if (!tools.IsValid()) { consumer_(SPV_MSG_ERROR, nullptr, {}, "Failed to create SPIRV-Tools interface; stopping."); return Replayer::ReplayerResultStatus::kFailedToCreateSpirvToolsInterface; } // Initial binary should be valid. if (!tools.Validate(&binary_in[0], binary_in.size(), validator_options_)) { consumer_(SPV_MSG_INFO, nullptr, {}, "Initial binary is invalid; stopping."); return Replayer::ReplayerResultStatus::kInitialBinaryInvalid; } // Build the module from the input binary. std::unique_ptr ir_context = BuildModule(target_env_, consumer_, binary_in.data(), binary_in.size()); assert(ir_context); // For replay validation, we track the last valid SPIR-V binary that was // observed. Initially this is the input binary. std::vector last_valid_binary; if (validate_during_replay_) { last_valid_binary = binary_in; } FactManager fact_manager; fact_manager.AddFacts(consumer_, initial_facts, ir_context.get()); std::unique_ptr transformation_context = first_overflow_id == 0 ? MakeUnique(&fact_manager, validator_options_) : MakeUnique( &fact_manager, validator_options_, MakeUnique(first_overflow_id)); // We track the largest id bound observed, to ensure that it only increases // as transformations are applied. uint32_t max_observed_id_bound = ir_context->module()->id_bound(); (void)(max_observed_id_bound); // Keep release-mode compilers happy. // Consider the transformation proto messages in turn. uint32_t counter = 0; for (auto& message : transformation_sequence_in.transformation()) { if (counter >= num_transformations_to_apply) { break; } counter++; auto transformation = Transformation::FromMessage(message); // Check whether the transformation can be applied. if (transformation->IsApplicable(ir_context.get(), *transformation_context)) { // The transformation is applicable, so apply it, and copy it to the // sequence of transformations that were applied. transformation->Apply(ir_context.get(), transformation_context.get()); *transformation_sequence_out->add_transformation() = message; assert(ir_context->module()->id_bound() >= max_observed_id_bound && "The module's id bound should only increase due to applying " "transformations."); max_observed_id_bound = ir_context->module()->id_bound(); if (validate_during_replay_) { std::vector binary_to_validate; ir_context->module()->ToBinary(&binary_to_validate, false); // Check whether the latest transformation led to a valid binary. if (!tools.Validate(&binary_to_validate[0], binary_to_validate.size(), validator_options_)) { consumer_(SPV_MSG_INFO, nullptr, {}, "Binary became invalid during replay (set a " "breakpoint to inspect); stopping."); return Replayer::ReplayerResultStatus::kReplayValidationFailure; } // The binary was valid, so it becomes the latest valid binary. last_valid_binary = std::move(binary_to_validate); } } } // Write out the module as a binary. ir_context->module()->ToBinary(binary_out, false); return Replayer::ReplayerResultStatus::kComplete; } } // namespace fuzz } // namespace spvtools