// Copyright (c) 2015-2016 The Khronos Group Inc. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and/or associated documentation files (the // "Materials"), to deal in the Materials without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Materials, and to // permit persons to whom the Materials are furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Materials. // // MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS // KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS // SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT // https://www.khronos.org/registry/ // // THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. #ifndef LIBSPIRV_VALIDATE_H_ #define LIBSPIRV_VALIDATE_H_ #include #include #include #include #include #include #include #include #include #include "assembly_grammar.h" #include "binary.h" #include "diagnostic.h" #include "instruction.h" #include "spirv-tools/libspirv.h" #include "spirv_definition.h" #include "table.h" #include "val/BasicBlock.h" // Structures namespace libspirv { class ValidationState_t; /// A function that returns a vector of BasicBlocks given a BasicBlock. Used to /// get the successor and predecessor nodes of a CFG block using get_blocks_func = std::function*(const BasicBlock*)>; /// @brief Depth first traversal starting from the \p entry BasicBlock /// /// This function performs a depth first traversal from the \p entry /// BasicBlock and calls the pre/postorder functions when it needs to process /// the node in pre order, post order. It also calls the backedge function /// when a back edge is encountered. /// /// @param[in] entry The root BasicBlock of a CFG /// @param[in] successor_func A function which will return a pointer to the /// successor nodes /// @param[in] preorder A function that will be called for every block in a /// CFG following preorder traversal semantics /// @param[in] postorder A function that will be called for every block in a /// CFG following postorder traversal semantics /// @param[in] backedge A function that will be called when a backedge is /// encountered during a traversal /// NOTE: The @p successor_func and predecessor_func each return a pointer to a /// collection such that iterators to that collection remain valid for the /// lifetime of the algorithm. void DepthFirstTraversal( const BasicBlock* entry, get_blocks_func successor_func, std::function preorder, std::function postorder, std::function backedge); /// @brief Calculates dominator edges for a set of blocks /// /// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy /// "A Simple, Fast Dominance Algorithm", 2001. /// /// The algorithm assumes there is a unique root node (a node without /// predecessors), and it is therefore at the end of the postorder vector. /// /// This function calculates the dominator edges for a set of blocks in the CFG. /// Uses the dominator algorithm by Cooper et al. /// /// @param[in] postorder A vector of blocks in post order traversal order /// in a CFG /// @param[in] predecessor_func Function used to get the predecessor nodes of a /// block /// /// @return the dominator tree of the graph, as a vector of pairs of nodes. /// The first node in the pair is a node in the graph. The second node in the /// pair is its immediate dominator in the sense of Cooper et.al., where a block /// without predecessors (such as the root node) is its own immediate dominator. std::vector> CalculateDominators( const std::vector& postorder, get_blocks_func predecessor_func); /// @brief Performs the Control Flow Graph checks /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. SPV_ERROR_INVALID_CFG otherwise spv_result_t PerformCfgChecks(ValidationState_t& _); /// @brief This function checks all ID definitions dominate their use in the /// CFG. /// /// This function will iterate over all ID definitions that are defined in the /// functions of a module and make sure that the definitions appear in a /// block that dominates their use. /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. SPV_ERROR_INVALID_ID otherwise spv_result_t CheckIdDefinitionDominateUse(const ValidationState_t& _); /// @brief Updates the immediate dominator for each of the block edges /// /// Updates the immediate dominator of the blocks for each of the edges /// provided by the @p dom_edges parameter /// /// @param[in,out] dom_edges The edges of the dominator tree /// @param[in] set_func This function will be called to updated the Immediate /// dominator void UpdateImmediateDominators( const std::vector>& dom_edges, std::function set_func); /// @brief Prints all of the dominators of a BasicBlock /// /// @param[in] block The dominators of this block will be printed void printDominatorList(BasicBlock& block); /// Performs logical layout validation as described in section 2.4 of the SPIR-V /// spec. spv_result_t ModuleLayoutPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); /// Performs Control Flow Graph validation of a module spv_result_t CfgPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); /// Performs Id and SSA validation of a module spv_result_t IdPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); /// Performs instruction validation. spv_result_t InstructionPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); } // namespace libspirv /// @brief Validate the ID usage of the instruction stream /// /// @param[in] pInsts stream of instructions /// @param[in] instCount number of instructions /// @param[in] opcodeTable table of specified Opcodes /// @param[in] operandTable table of specified operands /// @param[in] usedefs use-def info from module parsing /// @param[in,out] position current position in the stream /// @param[out] pDiag contains diagnostic on failure /// /// @return result code spv_result_t spvValidateInstructionIDs(const spv_instruction_t* pInsts, const uint64_t instCount, const spv_opcode_table opcodeTable, const spv_operand_table operandTable, const spv_ext_inst_table extInstTable, const libspirv::ValidationState_t& state, spv_position position, spv_diagnostic* pDiag); /// @brief Validate the ID's within a SPIR-V binary /// /// @param[in] pInstructions array of instructions /// @param[in] count number of elements in instruction array /// @param[in] bound the binary header /// @param[in] opcodeTable table of specified Opcodes /// @param[in] operandTable table of specified operands /// @param[in,out] position current word in the binary /// @param[out] pDiagnostic contains diagnostic on failure /// /// @return result code spv_result_t spvValidateIDs(const spv_instruction_t* pInstructions, const uint64_t count, const uint32_t bound, const spv_opcode_table opcodeTable, const spv_operand_table operandTable, const spv_ext_inst_table extInstTable, spv_position position, spv_diagnostic* pDiagnostic); #define spvCheckReturn(expression) \ if (spv_result_t error = (expression)) return error; #endif // LIBSPIRV_VALIDATE_H_