// Copyright (c) 2018 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_UTIL_SMALL_VECTOR_H_ #define SOURCE_UTIL_SMALL_VECTOR_H_ #include #include #include #include #include #include #include #include "source/util/make_unique.h" namespace spvtools { namespace utils { // The |SmallVector| class is intended to be a drop-in replacement for // |std::vector|. The difference is in the implementation. A |SmallVector| is // optimized for when the number of elements in the vector are small. Small is // defined by the template parameter |small_size|. // // Note that |SmallVector| is not always faster than an |std::vector|, so you // should experiment with different values for |small_size| and compare to // using and |std::vector|. // // TODO: I have implemented the public member functions from |std::vector| that // I needed. If others are needed they should be implemented. Do not implement // public member functions that are not defined by std::vector. template class SmallVector { public: using iterator = T*; using const_iterator = const T*; SmallVector() : size_(0), small_data_(reinterpret_cast(buffer)), large_data_(nullptr) {} SmallVector(const SmallVector& that) : SmallVector() { *this = that; } SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); } SmallVector(const std::vector& vec) : SmallVector() { if (vec.size() > small_size) { large_data_ = MakeUnique>(vec); } else { size_ = vec.size(); for (uint32_t i = 0; i < size_; i++) { new (small_data_ + i) T(vec[i]); } } } template SmallVector(InputIt first, InputIt last) : SmallVector() { insert(end(), first, last); } SmallVector(std::vector&& vec) : SmallVector() { if (vec.size() > small_size) { large_data_ = MakeUnique>(std::move(vec)); } else { size_ = vec.size(); for (uint32_t i = 0; i < size_; i++) { new (small_data_ + i) T(std::move(vec[i])); } } vec.clear(); } SmallVector(std::initializer_list init_list) : SmallVector() { if (init_list.size() < small_size) { for (auto it = init_list.begin(); it != init_list.end(); ++it) { new (small_data_ + (size_++)) T(std::move(*it)); } } else { large_data_ = MakeUnique>(std::move(init_list)); } } SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); } virtual ~SmallVector() { for (T* p = small_data_; p < small_data_ + size_; ++p) { p->~T(); } } SmallVector& operator=(const SmallVector& that) { assert(small_data_); if (that.large_data_) { if (large_data_) { *large_data_ = *that.large_data_; } else { large_data_ = MakeUnique>(*that.large_data_); } } else { large_data_.reset(nullptr); size_t i = 0; // Do a copy for any element in |this| that is already constructed. for (; i < size_ && i < that.size_; ++i) { small_data_[i] = that.small_data_[i]; } if (i >= that.size_) { // If the size of |this| becomes smaller after the assignment, then // destroy any extra elements. for (; i < size_; ++i) { small_data_[i].~T(); } } else { // If the size of |this| becomes larger after the assignement, copy // construct the new elements that are needed. for (; i < that.size_; ++i) { new (small_data_ + i) T(that.small_data_[i]); } } size_ = that.size_; } return *this; } SmallVector& operator=(SmallVector&& that) { if (that.large_data_) { large_data_.reset(that.large_data_.release()); } else { large_data_.reset(nullptr); size_t i = 0; // Do a move for any element in |this| that is already constructed. for (; i < size_ && i < that.size_; ++i) { small_data_[i] = std::move(that.small_data_[i]); } if (i >= that.size_) { // If the size of |this| becomes smaller after the assignment, then // destroy any extra elements. for (; i < size_; ++i) { small_data_[i].~T(); } } else { // If the size of |this| becomes larger after the assignement, move // construct the new elements that are needed. for (; i < that.size_; ++i) { new (small_data_ + i) T(std::move(that.small_data_[i])); } } size_ = that.size_; } // Reset |that| because all of the data has been moved to |this|. that.DestructSmallData(); return *this; } template friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) { if (lhs.size() != rhs.size()) { return false; } auto rit = rhs.begin(); for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) { if (*lit != *rit) { return false; } } return true; } // Avoid infinite recursion from rewritten operators in C++20 #if __cplusplus <= 201703L friend bool operator==(const std::vector& lhs, const SmallVector& rhs) { return rhs == lhs; } #endif friend bool operator!=(const SmallVector& lhs, const std::vector& rhs) { return !(lhs == rhs); } friend bool operator!=(const std::vector& lhs, const SmallVector& rhs) { return rhs != lhs; } T& operator[](size_t i) { if (!large_data_) { return small_data_[i]; } else { return (*large_data_)[i]; } } const T& operator[](size_t i) const { if (!large_data_) { return small_data_[i]; } else { return (*large_data_)[i]; } } size_t size() const { if (!large_data_) { return size_; } else { return large_data_->size(); } } iterator begin() { if (large_data_) { return large_data_->data(); } else { return small_data_; } } const_iterator begin() const { if (large_data_) { return large_data_->data(); } else { return small_data_; } } const_iterator cbegin() const { return begin(); } iterator end() { if (large_data_) { return large_data_->data() + large_data_->size(); } else { return small_data_ + size_; } } const_iterator end() const { if (large_data_) { return large_data_->data() + large_data_->size(); } else { return small_data_ + size_; } } const_iterator cend() const { return end(); } T* data() { return begin(); } const T* data() const { return cbegin(); } T& front() { return (*this)[0]; } const T& front() const { return (*this)[0]; } iterator erase(const_iterator pos) { return erase(pos, pos + 1); } iterator erase(const_iterator first, const_iterator last) { if (large_data_) { size_t start_index = first - large_data_->data(); size_t end_index = last - large_data_->data(); auto r = large_data_->erase(large_data_->begin() + start_index, large_data_->begin() + end_index); return large_data_->data() + (r - large_data_->begin()); } // Since C++11, std::vector has |const_iterator| for the parameters, so I // follow that. However, I need iterators to modify the current container, // which is not const. This is why I cast away the const. iterator f = const_cast(first); iterator l = const_cast(last); iterator e = end(); size_t num_of_del_elements = last - first; iterator ret = f; if (first == last) { return ret; } // Move |last| and any elements after it their earlier position. while (l != e) { *f = std::move(*l); ++f; ++l; } // Destroy the elements that were supposed to be deleted. while (f != l) { f->~T(); ++f; } // Update the size. size_ -= num_of_del_elements; return ret; } void push_back(const T& value) { if (!large_data_ && size_ == small_size) { MoveToLargeData(); } if (large_data_) { large_data_->push_back(value); return; } new (small_data_ + size_) T(value); ++size_; } void push_back(T&& value) { if (!large_data_ && size_ == small_size) { MoveToLargeData(); } if (large_data_) { large_data_->push_back(std::move(value)); return; } new (small_data_ + size_) T(std::move(value)); ++size_; } void pop_back() { if (large_data_) { large_data_->pop_back(); } else { --size_; small_data_[size_].~T(); } } template iterator insert(iterator pos, InputIt first, InputIt last) { size_t element_idx = (pos - begin()); size_t num_of_new_elements = std::distance(first, last); size_t new_size = size_ + num_of_new_elements; if (!large_data_ && new_size > small_size) { MoveToLargeData(); } if (large_data_) { typename std::vector::iterator new_pos = large_data_->begin() + element_idx; large_data_->insert(new_pos, first, last); return begin() + element_idx; } // Move |pos| and all of the elements after it over |num_of_new_elements| // places. We start at the end and work backwards, to make sure we do not // overwrite data that we have not moved yet. for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos; --i, --j) { if (i >= begin() + size_) { new (i) T(std::move(*j)); } else { *i = std::move(*j); } } // Copy the new elements into position. iterator p = pos; for (; first != last; ++p, ++first) { if (p >= small_data_ + size_) { new (p) T(*first); } else { *p = *first; } } // Update the size. size_ += num_of_new_elements; return pos; } bool empty() const { if (large_data_) { return large_data_->empty(); } return size_ == 0; } void clear() { if (large_data_) { large_data_->clear(); } else { DestructSmallData(); } } template void emplace_back(Args&&... args) { if (!large_data_ && size_ == small_size) { MoveToLargeData(); } if (large_data_) { large_data_->emplace_back(std::forward(args)...); } else { new (small_data_ + size_) T(std::forward(args)...); ++size_; } } void resize(size_t new_size, const T& v) { if (!large_data_ && new_size > small_size) { MoveToLargeData(); } if (large_data_) { large_data_->resize(new_size, v); return; } // If |new_size| < |size_|, then destroy the extra elements. for (size_t i = new_size; i < size_; ++i) { small_data_[i].~T(); } // If |new_size| > |size_|, the copy construct the new elements. for (size_t i = size_; i < new_size; ++i) { new (small_data_ + i) T(v); } // Update the size. size_ = new_size; } private: // Moves all of the element from |small_data_| into a new std::vector that can // be access through |large_data|. void MoveToLargeData() { assert(!large_data_); large_data_ = MakeUnique>(); for (size_t i = 0; i < size_; ++i) { large_data_->emplace_back(std::move(small_data_[i])); } DestructSmallData(); } // Destroys all of the elements in |small_data_| that have been constructed. void DestructSmallData() { for (size_t i = 0; i < size_; ++i) { small_data_[i].~T(); } size_ = 0; } // The number of elements in |small_data_| that have been constructed. size_t size_; // A type with the same alignment and size as T, but will is POD. struct alignas(T) PodType { std::array data; }; // The actual data used to store the array elements. It must never be used // directly, but must only be accessed through |small_data_|. PodType buffer[small_size]; // The pointed used to access the array of elements when the number of // elements is small. T* small_data_; // A pointer to a vector that is used to store the elements of the vector when // this size exceeds |small_size|. If |large_data_| is nullptr, then the data // is stored in |small_data_|. Otherwise, the data is stored in // |large_data_|. std::unique_ptr> large_data_; }; // namespace utils } // namespace utils } // namespace spvtools #endif // SOURCE_UTIL_SMALL_VECTOR_H_