// Copyright (c) 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // This file is specifically named spvtools_fuzz.proto so that the string // 'spvtools_fuzz' appears in the names of global-scope symbols that protoc // generates when targeting C++. This is to reduce the potential for name // clashes with other globally-scoped symbols. syntax = "proto3"; package spvtools.fuzz.protobufs; message UInt32Pair { // A pair of uint32s; useful for defining mappings. uint32 first = 1; uint32 second = 2; } message InstructionDescriptor { // Describes an instruction in some block of a function with respect to a // base instruction. // The id of an instruction after which the instruction being described is // believed to be located. It might be the using instruction itself. uint32 base_instruction_result_id = 1; // The opcode for the instruction being described. uint32 target_instruction_opcode = 2; // The number of matching opcodes to skip over when searching from the base // instruction to the instruction being described. uint32 num_opcodes_to_ignore = 3; } message IdUseDescriptor { // Describes a use of an id as an input operand to an instruction in some // block of a function. // Example: // - id_of_interest = 42 // - enclosing_instruction = ( // base_instruction_result_id = 50, // target_instruction_opcode = OpStore // num_opcodes_to_ignore = 7 // ) // - in_operand_index = 1 // represents a use of id 42 as input operand 1 to an OpStore instruction, // such that the OpStore instruction can be found in the same basic block as // the instruction with result id 50, and in particular is the 8th OpStore // instruction found from instruction 50 onwards (i.e. 7 OpStore // instructions are skipped). // An id that we would like to be able to find a use of. uint32 id_of_interest = 1; // The input operand index at which the use is expected. InstructionDescriptor enclosing_instruction = 2; uint32 in_operand_index = 3; } message DataDescriptor { // Represents a data element that can be accessed from an id, by walking the // type hierarchy via a sequence of 0 or more indices. // // Very similar to a UniformBufferElementDescriptor, except that a // DataDescriptor is rooted at the id of a scalar or composite. // The object being accessed - a scalar or composite uint32 object = 1; // 0 or more indices, used to index into a composite object repeated uint32 index = 2; } message UniformBufferElementDescriptor { // Represents a data element inside a uniform buffer. The element is // specified via (a) the result id of a uniform variable in which the element // is contained, and (b) a series of indices that need to be followed to get // to the element (via fields and array/vector indices). // // Example: suppose there is a uniform variable with descriptor set 7 and // binding 9, and that the uniform variable has the following type (using // GLSL-like syntax): // // struct S { // float f; // vec3 g; // int4 h[10]; // }; // // Then: // - (7, 9, [0]) describes the 'f' field. // - (7, 9, [1,1]) describes the y component of the 'g' field. // - (7, 9, [2,7,3]) describes the w component of element 7 of the 'h' field // The descriptor set and binding associated with a uniform variable. uint32 descriptor_set = 1; uint32 binding = 2; // An ordered sequence of indices through composite structures in the // uniform buffer. repeated uint32 index = 3; } message InstructionOperand { // Represents an operand to a SPIR-V instruction. // The type of the operand. uint32 operand_type = 1; // The data associated with the operand. For most operands (e.g. ids, // storage classes and literals) this will be a single word. repeated uint32 operand_data = 2; } message Instruction { // Represents a SPIR-V instruction. // The instruction's opcode (e.g. OpLabel). uint32 opcode = 1; // The id of the instruction's result type; 0 if there is no result type. uint32 result_type_id = 2; // The id of the instruction's result; 0 if there is no result. uint32 result_id = 3; // Zero or more input operands. repeated InstructionOperand input_operand = 4; } message FactSequence { repeated Fact fact = 1; } message Fact { oneof fact { // Order the fact options by numeric id (rather than alphabetically). FactConstantUniform constant_uniform_fact = 1; FactDataSynonym data_synonym_fact = 2; FactBlockIsDead block_is_dead_fact = 3; FactFunctionIsLivesafe function_is_livesafe_fact = 4; FactValueOfVariableIsArbitrary value_of_variable_is_arbitrary = 5; } } // Keep fact message types in alphabetical order: message FactConstantUniform { // Records the fact that a uniform buffer element is guaranteed to be equal // to a particular constant value. spirv-fuzz can use such guarantees to // obfuscate code, e.g. to manufacture an expression that will (due to the // guarantee) evaluate to a particular value at runtime but in a manner that // cannot be predicted at compile-time. // An element of a uniform buffer UniformBufferElementDescriptor uniform_buffer_element_descriptor = 1; // The words of the associated constant repeated uint32 constant_word = 2; } message FactDataSynonym { // Records the fact that the data held in two data descriptors are guaranteed // to be equal. spirv-fuzz can use this to replace uses of one piece of data // with a known-to-be-equal piece of data. // Data descriptors guaranteed to hold identical data. DataDescriptor data1 = 1; DataDescriptor data2 = 2; } message FactBlockIsDead { // Records the fact that a block is guaranteed to be dynamically unreachable. // This is useful because it informs the fuzzer that rather arbitrary changes // can be made to this block. uint32 block_id = 1; } message FactFunctionIsLivesafe { // Records the fact that a function is guaranteed to be "livesafe", meaning // that it will not make out-of-bounds accesses, does not contain reachable // OpKill or OpUnreachable instructions, does not contain loops that will // execute for large numbers of iterations, and only invokes other livesafe // functions. uint32 function_id = 1; } message FactValueOfVariableIsArbitrary { // Records the fact that the value stored in the variable or function // parameter with the given id can be arbitrary: the module's observable // behaviour does not depend on it. This means that arbitrary stores can be // made to the variable, and that nothing can be guaranteed about values // loaded from the variable. // The result id of an OpVariable instruction, or an OpFunctionParameter // instruction with pointer type uint32 variable_id = 1; } message AccessChainClampingInfo { // When making a function livesafe it is necessary to clamp the indices that // occur as operands to access chain instructions so that they are guaranteed // to be in bounds. This message type allows an access chain instruction to // have an associated sequence of ids that are reserved for comparing an // access chain index with a bound (e.g. an array size), and selecting // between the access chain index (if it is within bounds) and the bound (if // it is not). // // This allows turning an instruction of the form: // // %result = OpAccessChain %type %object ... %index ... // // into: // // %t1 = OpULessThanEqual %bool %index %bound_minus_one // %t2 = OpSelect %int_type %t1 %index %bound_minus_one // %result = OpAccessChain %type %object ... %t2 ... // The result id of an OpAccessChain or OpInBoundsAccessChain instruction. uint32 access_chain_id = 1; // A series of pairs of fresh ids, one per access chain index, for the results // of a compare instruction and a select instruction, serving the roles of %t1 // and %t2 in the above example. repeated UInt32Pair compare_and_select_ids = 2; } message LoopLimiterInfo { // Structure capturing the information required to manipulate a loop limiter // at a loop header. // The header for the loop. uint32 loop_header_id = 1; // A fresh id into which the loop limiter's current value can be loaded. uint32 load_id = 2; // A fresh id that can be used to increment the loaded value by 1. uint32 increment_id = 3; // A fresh id that can be used to compare the loaded value with the loop // limit. uint32 compare_id = 4; // A fresh id that can be used to compute the conjunction or disjunction of // an original loop exit condition with |compare_id|, if the loop's back edge // block can conditionally exit the loop. uint32 logical_op_id = 5; // A sequence of ids suitable for extending OpPhi instructions of the loop // merge block if it did not previously have an incoming edge from the loop // back edge block. repeated uint32 phi_id = 6; } message TransformationSequence { repeated Transformation transformation = 1; } message Transformation { oneof transformation { // Order the transformation options by numeric id (rather than // alphabetically). TransformationMoveBlockDown move_block_down = 1; TransformationSplitBlock split_block = 2; TransformationAddConstantBoolean add_constant_boolean = 3; TransformationAddConstantScalar add_constant_scalar = 4; TransformationAddTypeBoolean add_type_boolean = 5; TransformationAddTypeFloat add_type_float = 6; TransformationAddTypeInt add_type_int = 7; TransformationAddDeadBreak add_dead_break = 8; TransformationReplaceBooleanConstantWithConstantBinary replace_boolean_constant_with_constant_binary = 9; TransformationAddTypePointer add_type_pointer = 10; TransformationReplaceConstantWithUniform replace_constant_with_uniform = 11; TransformationAddDeadContinue add_dead_continue = 12; TransformationCopyObject copy_object = 13; TransformationReplaceIdWithSynonym replace_id_with_synonym = 14; TransformationSetSelectionControl set_selection_control = 15; TransformationCompositeConstruct composite_construct = 16; TransformationSetLoopControl set_loop_control = 17; TransformationSetFunctionControl set_function_control = 18; TransformationAddNoContractionDecoration add_no_contraction_decoration = 19; TransformationSetMemoryOperandsMask set_memory_operands_mask = 20; TransformationCompositeExtract composite_extract = 21; TransformationVectorShuffle vector_shuffle = 22; TransformationOutlineFunction outline_function = 23; TransformationMergeBlocks merge_blocks = 24; TransformationAddTypeVector add_type_vector = 25; TransformationAddTypeArray add_type_array = 26; TransformationAddTypeMatrix add_type_matrix = 27; TransformationAddTypeStruct add_type_struct = 28; TransformationAddTypeFunction add_type_function = 29; TransformationAddConstantComposite add_constant_composite = 30; TransformationAddGlobalVariable add_global_variable = 31; TransformationAddGlobalUndef add_global_undef = 32; TransformationAddFunction add_function = 33; TransformationAddDeadBlock add_dead_block = 34; // Add additional option using the next available number. } } // Keep transformation message types in alphabetical order: message TransformationAddConstantBoolean { // Supports adding the constants true and false to a module, which may be // necessary in order to enable other transformations if they are not present. uint32 fresh_id = 1; bool is_true = 2; } message TransformationAddConstantComposite { // Adds a constant of the given composite type to the module. // Fresh id for the composite uint32 fresh_id = 1; // A composite type id uint32 type_id = 2; // Constituent ids for the composite repeated uint32 constituent_id = 3; } message TransformationAddConstantScalar { // Adds a constant of the given scalar type. // Id for the constant uint32 fresh_id = 1; // Id for the scalar type of the constant uint32 type_id = 2; // Value of the constant repeated uint32 word = 3; } message TransformationAddDeadBlock { // Adds a new block to the module that is statically reachable from an // existing block, but dynamically unreachable. // Fresh id for the dead block uint32 fresh_id = 1; // Id of an existing block terminated with OpBranch, such that this OpBranch // can be replaced with an OpBranchConditional to its exiting successor or // the dead block uint32 existing_block = 2; // Determines whether the condition associated with the OpBranchConditional // is true or false bool condition_value = 3; } message TransformationAddDeadBreak { // A transformation that turns a basic block that unconditionally branches to // its successor into a block that potentially breaks out of a structured // control flow construct, but in such a manner that the break cannot actually // be taken. // The block to break from uint32 from_block = 1; // The merge block to break to uint32 to_block = 2; // Determines whether the break condition is true or false bool break_condition_value = 3; // A sequence of ids suitable for extending OpPhi instructions as a result of // the new break edge repeated uint32 phi_id = 4; } message TransformationAddDeadContinue { // A transformation that turns a basic block appearing in a loop and that // unconditionally branches to its successor into a block that potentially // branches to the continue target of the loop, but in such a manner that the // continue branch cannot actually be taken. // The block to continue from uint32 from_block = 1; // Determines whether the continue condition is true or false bool continue_condition_value = 2; // A sequence of ids suitable for extending OpPhi instructions as a result of // the new break edge repeated uint32 phi_id = 3; } message TransformationAddFunction { // Adds a SPIR-V function to the module. // The series of instructions that comprise the function. repeated Instruction instruction = 1; // True if and only if the given function should be made livesafe (see // FactFunctionIsLivesafe for definition). bool is_livesafe = 2; // Fresh id for a new variable that will serve as a "loop limiter" for the // function; only relevant if |is_livesafe| holds. uint32 loop_limiter_variable_id = 3; // Id of an existing unsigned integer constant providing the maximum value // that the loop limiter can reach before the loop is broken from; only // relevant if |is_livesafe| holds. uint32 loop_limit_constant_id = 4; // Fresh ids for each loop in the function that allow the loop limiter to be // manipulated; only relevant if |is_livesafe| holds. repeated LoopLimiterInfo loop_limiter_info = 5; // Id of an existing global value with the same return type as the function // that can be used to replace OpKill and OpReachable instructions with // ReturnValue instructions. Ignored if the function has void return type. uint32 kill_unreachable_return_value_id = 6; // A mapping (represented as a sequence) from every access chain result id in // the function to the ids required to clamp its indices to ensure they are in // bounds. repeated AccessChainClampingInfo access_chain_clamping_info = 7; } message TransformationAddGlobalUndef { // Adds an undefined value of a given type to the module at global scope. // Fresh id for the undefined value uint32 fresh_id = 1; // The type of the undefined value uint32 type_id = 2; } message TransformationAddGlobalVariable { // Adds a global variable of the given type to the module, with Private // storage class and optionally with an initializer. // Fresh id for the global variable uint32 fresh_id = 1; // The type of the global variable uint32 type_id = 2; // Optional initializer; 0 if there is no initializer uint32 initializer_id = 3; // True if and only if the value of the variable should be regarded, in // general, as totally unknown and subject to change (even if, due to an // initializer, the original value is known). This is the case for variables // added when a module is donated, for example, and means that stores to such // variables can be performed in an arbitrary fashion. bool value_is_arbitrary = 4; } message TransformationAddNoContractionDecoration { // Applies OpDecorate NoContraction to the given result id // Result id to be decorated uint32 result_id = 1; } message TransformationAddTypeArray { // Adds an array type of the given element type and size to the module // Fresh id for the array type uint32 fresh_id = 1; // The array's element type uint32 element_type_id = 2; // The array's size uint32 size_id = 3; } message TransformationAddTypeBoolean { // Adds OpTypeBool to the module // Id to be used for the type uint32 fresh_id = 1; } message TransformationAddTypeFloat { // Adds OpTypeFloat to the module with the given width // Id to be used for the type uint32 fresh_id = 1; // Floating-point width uint32 width = 2; } message TransformationAddTypeFunction { // Adds a function type to the module // Fresh id for the function type uint32 fresh_id = 1; // The function's return type uint32 return_type_id = 2; // The function's argument types repeated uint32 argument_type_id = 3; } message TransformationAddTypeInt { // Adds OpTypeInt to the module with the given width and signedness // Id to be used for the type uint32 fresh_id = 1; // Integer width uint32 width = 2; // True if and only if this is a signed type bool is_signed = 3; } message TransformationAddTypeMatrix { // Adds a matrix type to the module // Fresh id for the matrix type uint32 fresh_id = 1; // The matrix's column type, which must be a floating-point vector (as per // the "data rules" in the SPIR-V specification). uint32 column_type_id = 2; // The matrix's column count uint32 column_count = 3; } message TransformationAddTypePointer { // Adds OpTypePointer to the module, with the given storage class and base // type // Id to be used for the type uint32 fresh_id = 1; // Pointer storage class uint32 storage_class = 2; // Id of the base type for the pointer uint32 base_type_id = 3; } message TransformationAddTypeStruct { // Adds a struct type to the module // Fresh id for the struct type uint32 fresh_id = 1; // The struct's member types repeated uint32 member_type_id = 3; } message TransformationAddTypeVector { // Adds a vector type to the module // Fresh id for the vector type uint32 fresh_id = 1; // The vector's component type uint32 component_type_id = 2; // The vector's component count uint32 component_count = 3; } message TransformationCompositeConstruct { // A transformation that introduces an OpCompositeConstruct instruction to // make a composite object. // Id of the type of the composite that is to be constructed uint32 composite_type_id = 1; // Ids of the objects that will form the components of the composite repeated uint32 component = 2; // A descriptor for an instruction in a block before which the new // OpCompositeConstruct instruction should be inserted InstructionDescriptor instruction_to_insert_before = 3; // A fresh id for the composite object uint32 fresh_id = 4; } message TransformationCompositeExtract { // A transformation that adds an instruction to extract an element from a // composite. // A descriptor for an instruction in a block before which the new // OpCompositeExtract instruction should be inserted InstructionDescriptor instruction_to_insert_before = 1; // Result id for the extract operation. uint32 fresh_id = 2; // Id of the composite from which data is to be extracted. uint32 composite_id = 3; // Indices that indicate which part of the composite should be extracted. repeated uint32 index = 4; } message TransformationCopyObject { // A transformation that introduces an OpCopyObject instruction to make a // copy of an object. // Id of the object to be copied uint32 object = 1; // A descriptor for an instruction in a block before which the new // OpCopyObject instruction should be inserted InstructionDescriptor instruction_to_insert_before = 2; // A fresh id for the copied object uint32 fresh_id = 3; } message TransformationMergeBlocks { // A transformation that merges a block with its predecessor. // The id of the block that is to be merged with its predecessor; the merged // block will have the *predecessor's* id. uint32 block_id = 1; } message TransformationMoveBlockDown { // A transformation that moves a basic block to be one position lower in // program order. // The id of the block to move down. uint32 block_id = 1; } message TransformationOutlineFunction { // A transformation that outlines a single-entry single-exit region of a // control flow graph into a separate function, and replaces the region with // a call to that function. // Id of the entry block of the single-entry single-exit region to be outlined uint32 entry_block = 1; // Id of the exit block of the single-entry single-exit region to be outlined uint32 exit_block = 2; // Id of a struct that will store the return values of the new function uint32 new_function_struct_return_type_id = 3; // A fresh id for the type of the outlined function uint32 new_function_type_id = 4; // A fresh id for the outlined function itself uint32 new_function_id = 5; // A fresh id to represent the block in the outlined function that represents // the first block of the outlined region. uint32 new_function_region_entry_block = 6; // A fresh id for the result of the OpFunctionCall instruction that will call // the outlined function uint32 new_caller_result_id = 7; // A fresh id to capture the return value of the outlined function - the // argument to OpReturn uint32 new_callee_result_id = 8; // Ids defined outside the region and used inside the region will become // parameters to the outlined function. This is a mapping from used ids to // fresh parameter ids. repeated UInt32Pair input_id_to_fresh_id = 9; // Ids defined inside the region and used outside the region will become // fresh ids defined by the outlined function, which get copied into the // function's struct return value and then copied into their destination ids // by the caller. This is a mapping from original ids to corresponding fresh // ids. repeated UInt32Pair output_id_to_fresh_id = 10; } message TransformationReplaceBooleanConstantWithConstantBinary { // A transformation to capture replacing a use of a boolean constant with // binary operation on two constant values // A descriptor for the boolean constant id we would like to replace IdUseDescriptor id_use_descriptor = 1; // Id for the constant to be used on the LHS of the comparision uint32 lhs_id = 2; // Id for the constant to be used on the RHS of the comparision uint32 rhs_id = 3; // Opcode for binary operator uint32 opcode = 4; // Id that will store the result of the binary operation instruction uint32 fresh_id_for_binary_operation = 5; } message TransformationReplaceConstantWithUniform { // Replaces a use of a constant id with the result of a load from an // element of uniform buffer known to hold the same value as the constant // A descriptor for the id we would like to replace IdUseDescriptor id_use_descriptor = 1; // Uniform descriptor to identify which uniform value to choose UniformBufferElementDescriptor uniform_descriptor = 2; // Id that will store the result of an access chain uint32 fresh_id_for_access_chain = 3; // Id that will store the result of a load uint32 fresh_id_for_load = 4; } message TransformationReplaceIdWithSynonym { // Replaces a use of an id with an id that is known to be synonymous, e.g. // because it was obtained via applying OpCopyObject // The id use that is to be replaced IdUseDescriptor id_use_descriptor = 1; // The synonymous id uint32 synonymous_id = 2; } message TransformationSetFunctionControl { // A transformation that sets the function control operand of an OpFunction // instruction. // The result id of an OpFunction instruction uint32 function_id = 1; // The value to which the 'function control' operand should be set. uint32 function_control = 2; } message TransformationSetLoopControl { // A transformation that sets the loop control operand of an OpLoopMerge // instruction. // The id of a basic block that should contain OpLoopMerge uint32 block_id = 1; // The value to which the 'loop control' operand should be set. // This must be a legal loop control mask. uint32 loop_control = 2; // Provides a peel count value for the loop. Used if and only if the // PeelCount bit is set. Must be zero if the PeelCount bit is not set (can // still be zero if this bit is set). uint32 peel_count = 3; // Provides a partial count value for the loop. Used if and only if the // PartialCount bit is set. Must be zero if the PartialCount bit is not set // (can still be zero if this bit is set). uint32 partial_count = 4; } message TransformationSetMemoryOperandsMask { // A transformation that sets the memory operands mask of a memory access // instruction. // A descriptor for a memory access instruction, e.g. an OpLoad InstructionDescriptor memory_access_instruction = 1; // A mask of memory operands to be applied to the instruction. It must be the // same as the original mask, except that Volatile can be added, and // Nontemporal can be added or removed. uint32 memory_operands_mask = 2; // Some memory access instructions allow more than one mask to be specified; // this field indicates which mask should be set uint32 memory_operands_mask_index = 3; } message TransformationSetSelectionControl { // A transformation that sets the selection control operand of an // OpSelectionMerge instruction. // The id of a basic block that should contain OpSelectionMerge uint32 block_id = 1; // The value to which the 'selection control' operand should be set. // Although technically 'selection control' is a literal mask that can be // some combination of 'None', 'Flatten' and 'DontFlatten', the combination // 'Flatten | DontFlatten' does not make sense and is not allowed here. uint32 selection_control = 2; } message TransformationSplitBlock { // A transformation that splits a basic block into two basic blocks // A descriptor for an instruction such that the block containing the // described instruction should be split right before the instruction. InstructionDescriptor instruction_to_split_before = 1; // An id that must not yet be used by the module to which this transformation // is applied. Rather than having the transformation choose a suitable id on // application, we require the id to be given upfront in order to facilitate // reducing fuzzed shaders by removing transformations. The reason is that // future transformations may refer to the fresh id introduced by this // transformation, and if we end up changing what that id is, due to removing // earlier transformations, it may inhibit later transformations from // applying. uint32 fresh_id = 2; } message TransformationVectorShuffle { // A transformation that adds a vector shuffle instruction. // A descriptor for an instruction in a block before which the new // OpVectorShuffle instruction should be inserted InstructionDescriptor instruction_to_insert_before = 1; // Result id for the shuffle operation. uint32 fresh_id = 2; // Id of the first vector operand. uint32 vector1 = 3; // Id of the second vector operand. uint32 vector2 = 4; // Indices that indicate which components of the input vectors should be used. repeated uint32 component = 5; }