// Copyright (c) 2018 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/comp/move_to_front.h" #include #include #include #include #include #include #include namespace spvtools { namespace comp { bool MoveToFront::Insert(uint32_t value) { auto it = value_to_node_.find(value); if (it != value_to_node_.end() && IsInTree(it->second)) return false; const uint32_t old_size = GetSize(); (void)old_size; InsertNode(CreateNode(next_timestamp_++, value)); last_accessed_value_ = value; last_accessed_value_valid_ = true; assert(value_to_node_.count(value)); assert(old_size + 1 == GetSize()); return true; } bool MoveToFront::Remove(uint32_t value) { auto it = value_to_node_.find(value); if (it == value_to_node_.end()) return false; if (!IsInTree(it->second)) return false; if (last_accessed_value_ == value) last_accessed_value_valid_ = false; const uint32_t orphan = RemoveNode(it->second); (void)orphan; // The node of |value| is still alive but it's orphaned now. Can still be // reused later. assert(!IsInTree(orphan)); assert(ValueOf(orphan) == value); return true; } bool MoveToFront::RankFromValue(uint32_t value, uint32_t* rank) { if (last_accessed_value_valid_ && last_accessed_value_ == value) { *rank = 1; return true; } const uint32_t old_size = GetSize(); if (old_size == 1) { if (ValueOf(root_) == value) { *rank = 1; return true; } else { return false; } } const auto it = value_to_node_.find(value); if (it == value_to_node_.end()) { return false; } uint32_t target = it->second; if (!IsInTree(target)) { return false; } uint32_t node = target; *rank = 1 + SizeOf(LeftOf(node)); while (node) { if (IsRightChild(node)) *rank += 1 + SizeOf(LeftOf(ParentOf(node))); node = ParentOf(node); } // Don't update timestamp if the node has rank 1. if (*rank != 1) { // Update timestamp and reposition the node. target = RemoveNode(target); assert(ValueOf(target) == value); assert(old_size == GetSize() + 1); MutableTimestampOf(target) = next_timestamp_++; InsertNode(target); assert(old_size == GetSize()); } last_accessed_value_ = value; last_accessed_value_valid_ = true; return true; } bool MoveToFront::HasValue(uint32_t value) const { const auto it = value_to_node_.find(value); if (it == value_to_node_.end()) { return false; } return IsInTree(it->second); } bool MoveToFront::Promote(uint32_t value) { if (last_accessed_value_valid_ && last_accessed_value_ == value) { return true; } const uint32_t old_size = GetSize(); if (old_size == 1) return ValueOf(root_) == value; const auto it = value_to_node_.find(value); if (it == value_to_node_.end()) { return false; } uint32_t target = it->second; if (!IsInTree(target)) { return false; } // Update timestamp and reposition the node. target = RemoveNode(target); assert(ValueOf(target) == value); assert(old_size == GetSize() + 1); MutableTimestampOf(target) = next_timestamp_++; InsertNode(target); assert(old_size == GetSize()); last_accessed_value_ = value; last_accessed_value_valid_ = true; return true; } bool MoveToFront::ValueFromRank(uint32_t rank, uint32_t* value) { if (last_accessed_value_valid_ && rank == 1) { *value = last_accessed_value_; return true; } const uint32_t old_size = GetSize(); if (rank <= 0 || rank > old_size) { return false; } if (old_size == 1) { *value = ValueOf(root_); return true; } const bool update_timestamp = (rank != 1); uint32_t node = root_; while (node) { const uint32_t left_subtree_num_nodes = SizeOf(LeftOf(node)); if (rank == left_subtree_num_nodes + 1) { // This is the node we are looking for. // Don't update timestamp if the node has rank 1. if (update_timestamp) { node = RemoveNode(node); assert(old_size == GetSize() + 1); MutableTimestampOf(node) = next_timestamp_++; InsertNode(node); assert(old_size == GetSize()); } *value = ValueOf(node); last_accessed_value_ = *value; last_accessed_value_valid_ = true; return true; } if (rank < left_subtree_num_nodes + 1) { // Descend into the left subtree. The rank is still valid. node = LeftOf(node); } else { // Descend into the right subtree. We leave behind the left subtree and // the current node, adjust the |rank| accordingly. rank -= left_subtree_num_nodes + 1; node = RightOf(node); } } assert(0); return false; } uint32_t MoveToFront::CreateNode(uint32_t timestamp, uint32_t value) { uint32_t handle = static_cast(nodes_.size()); const auto result = value_to_node_.emplace(value, handle); if (result.second) { // Create new node. nodes_.emplace_back(Node()); Node& node = nodes_.back(); node.timestamp = timestamp; node.value = value; node.size = 1; // Non-NIL nodes start with height 1 because their NIL children are // leaves. node.height = 1; } else { // Reuse old node. handle = result.first->second; assert(!IsInTree(handle)); assert(ValueOf(handle) == value); assert(SizeOf(handle) == 1); assert(HeightOf(handle) == 1); MutableTimestampOf(handle) = timestamp; } return handle; } void MoveToFront::InsertNode(uint32_t node) { assert(!IsInTree(node)); assert(SizeOf(node) == 1); assert(HeightOf(node) == 1); assert(TimestampOf(node)); if (!root_) { root_ = node; return; } uint32_t iter = root_; uint32_t parent = 0; // Will determine if |node| will become the right or left child after // insertion (but before balancing). bool right_child = true; // Find the node which will become |node|'s parent after insertion // (but before balancing). while (iter) { parent = iter; assert(TimestampOf(iter) != TimestampOf(node)); right_child = TimestampOf(iter) > TimestampOf(node); iter = right_child ? RightOf(iter) : LeftOf(iter); } assert(parent); // Connect node and parent. MutableParentOf(node) = parent; if (right_child) MutableRightOf(parent) = node; else MutableLeftOf(parent) = node; // Insertion is finished. Start the balancing process. bool needs_rebalancing = true; parent = ParentOf(node); while (parent) { UpdateNode(parent); if (needs_rebalancing) { const int parent_balance = BalanceOf(parent); if (RightOf(parent) == node) { // Added node to the right subtree. if (parent_balance > 1) { // Parent is right heavy, rotate left. if (BalanceOf(node) < 0) RotateRight(node); parent = RotateLeft(parent); } else if (parent_balance == 0 || parent_balance == -1) { // Parent is balanced or left heavy, no need to balance further. needs_rebalancing = false; } } else { // Added node to the left subtree. if (parent_balance < -1) { // Parent is left heavy, rotate right. if (BalanceOf(node) > 0) RotateLeft(node); parent = RotateRight(parent); } else if (parent_balance == 0 || parent_balance == 1) { // Parent is balanced or right heavy, no need to balance further. needs_rebalancing = false; } } } assert(BalanceOf(parent) >= -1 && (BalanceOf(parent) <= 1)); node = parent; parent = ParentOf(parent); } } uint32_t MoveToFront::RemoveNode(uint32_t node) { if (LeftOf(node) && RightOf(node)) { // If |node| has two children, then use another node as scapegoat and swap // their contents. We pick the scapegoat on the side of the tree which has // more nodes. const uint32_t scapegoat = SizeOf(LeftOf(node)) >= SizeOf(RightOf(node)) ? RightestDescendantOf(LeftOf(node)) : LeftestDescendantOf(RightOf(node)); assert(scapegoat); std::swap(MutableValueOf(node), MutableValueOf(scapegoat)); std::swap(MutableTimestampOf(node), MutableTimestampOf(scapegoat)); value_to_node_[ValueOf(node)] = node; value_to_node_[ValueOf(scapegoat)] = scapegoat; node = scapegoat; } // |node| may have only one child at this point. assert(!RightOf(node) || !LeftOf(node)); uint32_t parent = ParentOf(node); uint32_t child = RightOf(node) ? RightOf(node) : LeftOf(node); // Orphan |node| and reconnect parent and child. if (child) MutableParentOf(child) = parent; if (parent) { if (LeftOf(parent) == node) MutableLeftOf(parent) = child; else MutableRightOf(parent) = child; } MutableParentOf(node) = 0; MutableLeftOf(node) = 0; MutableRightOf(node) = 0; UpdateNode(node); const uint32_t orphan = node; if (root_ == node) root_ = child; // Removal is finished. Start the balancing process. bool needs_rebalancing = true; node = child; while (parent) { UpdateNode(parent); if (needs_rebalancing) { const int parent_balance = BalanceOf(parent); if (parent_balance == 1 || parent_balance == -1) { // The height of the subtree was not changed. needs_rebalancing = false; } else { if (RightOf(parent) == node) { // Removed node from the right subtree. if (parent_balance < -1) { // Parent is left heavy, rotate right. const uint32_t sibling = LeftOf(parent); if (BalanceOf(sibling) > 0) RotateLeft(sibling); parent = RotateRight(parent); } } else { // Removed node from the left subtree. if (parent_balance > 1) { // Parent is right heavy, rotate left. const uint32_t sibling = RightOf(parent); if (BalanceOf(sibling) < 0) RotateRight(sibling); parent = RotateLeft(parent); } } } } assert(BalanceOf(parent) >= -1 && (BalanceOf(parent) <= 1)); node = parent; parent = ParentOf(parent); } return orphan; } uint32_t MoveToFront::RotateLeft(const uint32_t node) { const uint32_t pivot = RightOf(node); assert(pivot); // LeftOf(pivot) gets attached to node in place of pivot. MutableRightOf(node) = LeftOf(pivot); if (RightOf(node)) MutableParentOf(RightOf(node)) = node; // Pivot gets attached to ParentOf(node) in place of node. MutableParentOf(pivot) = ParentOf(node); if (!ParentOf(node)) root_ = pivot; else if (IsLeftChild(node)) MutableLeftOf(ParentOf(node)) = pivot; else MutableRightOf(ParentOf(node)) = pivot; // Node is child of pivot. MutableLeftOf(pivot) = node; MutableParentOf(node) = pivot; // Update both node and pivot. Pivot is the new parent of node, so node should // be updated first. UpdateNode(node); UpdateNode(pivot); return pivot; } uint32_t MoveToFront::RotateRight(const uint32_t node) { const uint32_t pivot = LeftOf(node); assert(pivot); // RightOf(pivot) gets attached to node in place of pivot. MutableLeftOf(node) = RightOf(pivot); if (LeftOf(node)) MutableParentOf(LeftOf(node)) = node; // Pivot gets attached to ParentOf(node) in place of node. MutableParentOf(pivot) = ParentOf(node); if (!ParentOf(node)) root_ = pivot; else if (IsLeftChild(node)) MutableLeftOf(ParentOf(node)) = pivot; else MutableRightOf(ParentOf(node)) = pivot; // Node is child of pivot. MutableRightOf(pivot) = node; MutableParentOf(node) = pivot; // Update both node and pivot. Pivot is the new parent of node, so node should // be updated first. UpdateNode(node); UpdateNode(pivot); return pivot; } void MoveToFront::UpdateNode(uint32_t node) { MutableSizeOf(node) = 1 + SizeOf(LeftOf(node)) + SizeOf(RightOf(node)); MutableHeightOf(node) = 1 + std::max(HeightOf(LeftOf(node)), HeightOf(RightOf(node))); } } // namespace comp } // namespace spvtools