// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef LIBSPIRV_VALIDATE_H_ #define LIBSPIRV_VALIDATE_H_ #include #include #include #include "instruction.h" #include "message.h" #include "spirv-tools/libspirv.h" #include "table.h" namespace libspirv { class ValidationState_t; class BasicBlock; /// A function that returns a vector of BasicBlocks given a BasicBlock. Used to /// get the successor and predecessor nodes of a CFG block using get_blocks_func = std::function*(const BasicBlock*)>; /// @brief Depth first traversal starting from the \p entry BasicBlock /// /// This function performs a depth first traversal from the \p entry /// BasicBlock and calls the pre/postorder functions when it needs to process /// the node in pre order, post order. It also calls the backedge function /// when a back edge is encountered. /// /// @param[in] entry The root BasicBlock of a CFG /// @param[in] successor_func A function which will return a pointer to the /// successor nodes /// @param[in] preorder A function that will be called for every block in a /// CFG following preorder traversal semantics /// @param[in] postorder A function that will be called for every block in a /// CFG following postorder traversal semantics /// @param[in] backedge A function that will be called when a backedge is /// encountered during a traversal /// NOTE: The @p successor_func and predecessor_func each return a pointer to a /// collection such that iterators to that collection remain valid for the /// lifetime of the algorithm. void DepthFirstTraversal( const BasicBlock* entry, get_blocks_func successor_func, std::function preorder, std::function postorder, std::function backedge); /// @brief Calculates dominator edges for a set of blocks /// /// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy /// "A Simple, Fast Dominance Algorithm", 2001. /// /// The algorithm assumes there is a unique root node (a node without /// predecessors), and it is therefore at the end of the postorder vector. /// /// This function calculates the dominator edges for a set of blocks in the CFG. /// Uses the dominator algorithm by Cooper et al. /// /// @param[in] postorder A vector of blocks in post order traversal order /// in a CFG /// @param[in] predecessor_func Function used to get the predecessor nodes of a /// block /// /// @return the dominator tree of the graph, as a vector of pairs of nodes. /// The first node in the pair is a node in the graph. The second node in the /// pair is its immediate dominator in the sense of Cooper et.al., where a block /// without predecessors (such as the root node) is its own immediate dominator. std::vector> CalculateDominators( const std::vector& postorder, get_blocks_func predecessor_func); /// @brief Performs the Control Flow Graph checks /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. SPV_ERROR_INVALID_CFG otherwise spv_result_t PerformCfgChecks(ValidationState_t& _); /// @brief Updates the use vectors of all instructions that can be referenced /// /// This function will update the vector which define where an instruction was /// referenced in the binary. /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. spv_result_t UpdateIdUse(ValidationState_t& _); /// @brief This function checks all ID definitions dominate their use in the /// CFG. /// /// This function will iterate over all ID definitions that are defined in the /// functions of a module and make sure that the definitions appear in a /// block that dominates their use. /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. SPV_ERROR_INVALID_ID otherwise spv_result_t CheckIdDefinitionDominateUse(const ValidationState_t& _); /// @brief Updates the immediate dominator for each of the block edges /// /// Updates the immediate dominator of the blocks for each of the edges /// provided by the @p dom_edges parameter /// /// @param[in,out] dom_edges The edges of the dominator tree /// @param[in] set_func This function will be called to updated the Immediate /// dominator void UpdateImmediateDominators( const std::vector>& dom_edges, std::function set_func); /// @brief Prints all of the dominators of a BasicBlock /// /// @param[in] block The dominators of this block will be printed void printDominatorList(BasicBlock& block); /// Performs logical layout validation as described in section 2.4 of the SPIR-V /// spec. spv_result_t ModuleLayoutPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); /// Performs Control Flow Graph validation of a module spv_result_t CfgPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); /// Performs Id and SSA validation of a module spv_result_t IdPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); /// Performs instruction validation. spv_result_t InstructionPass(ValidationState_t& _, const spv_parsed_instruction_t* inst); } // namespace libspirv /// @brief Validate the ID usage of the instruction stream /// /// @param[in] pInsts stream of instructions /// @param[in] instCount number of instructions /// @param[in] opcodeTable table of specified Opcodes /// @param[in] operandTable table of specified operands /// @param[in] usedefs use-def info from module parsing /// @param[in,out] position current position in the stream /// /// @return result code spv_result_t spvValidateInstructionIDs(const spv_instruction_t* pInsts, const uint64_t instCount, const spv_opcode_table opcodeTable, const spv_operand_table operandTable, const spv_ext_inst_table extInstTable, const libspirv::ValidationState_t& state, spv_position position); /// @brief Validate the ID's within a SPIR-V binary /// /// @param[in] pInstructions array of instructions /// @param[in] count number of elements in instruction array /// @param[in] bound the binary header /// @param[in] opcodeTable table of specified Opcodes /// @param[in] operandTable table of specified operands /// @param[in,out] position current word in the binary /// @param[in] consumer message consumer callback /// /// @return result code spv_result_t spvValidateIDs(const spv_instruction_t* pInstructions, const uint64_t count, const uint32_t bound, const spv_opcode_table opcodeTable, const spv_operand_table operandTable, const spv_ext_inst_table extInstTable, spv_position position, const spvtools::MessageConsumer& consumer); #endif // LIBSPIRV_VALIDATE_H_