// Copyright (c) 2020 The Khronos Group Inc. // Copyright (c) 2020 Valve Corporation // Copyright (c) 2020 LunarG Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "inst_debug_printf_pass.h" #include "source/util/string_utils.h" #include "spirv/unified1/NonSemanticDebugPrintf.h" namespace spvtools { namespace opt { void InstDebugPrintfPass::GenOutputValues(Instruction* val_inst, std::vector* val_ids, InstructionBuilder* builder) { uint32_t val_ty_id = val_inst->type_id(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Type* val_ty = type_mgr->GetType(val_ty_id); switch (val_ty->kind()) { case analysis::Type::kVector: { analysis::Vector* v_ty = val_ty->AsVector(); const analysis::Type* c_ty = v_ty->element_type(); uint32_t c_ty_id = type_mgr->GetId(c_ty); for (uint32_t c = 0; c < v_ty->element_count(); ++c) { Instruction* c_inst = builder->AddCompositeExtract(c_ty_id, val_inst->result_id(), {c}); GenOutputValues(c_inst, val_ids, builder); } return; } case analysis::Type::kBool: { // Select between uint32 zero or one uint32_t zero_id = builder->GetUintConstantId(0); uint32_t one_id = builder->GetUintConstantId(1); Instruction* sel_inst = builder->AddSelect( GetUintId(), val_inst->result_id(), one_id, zero_id); val_ids->push_back(sel_inst->result_id()); return; } case analysis::Type::kFloat: { analysis::Float* f_ty = val_ty->AsFloat(); switch (f_ty->width()) { case 16: { // Convert float16 to float32 and recurse Instruction* f32_inst = builder->AddUnaryOp( GetFloatId(), spv::Op::OpFConvert, val_inst->result_id()); GenOutputValues(f32_inst, val_ids, builder); return; } case 64: { // Bitcast float64 to uint64 and recurse Instruction* ui64_inst = builder->AddUnaryOp( GetUint64Id(), spv::Op::OpBitcast, val_inst->result_id()); GenOutputValues(ui64_inst, val_ids, builder); return; } case 32: { // Bitcase float32 to uint32 Instruction* bc_inst = builder->AddUnaryOp( GetUintId(), spv::Op::OpBitcast, val_inst->result_id()); val_ids->push_back(bc_inst->result_id()); return; } default: assert(false && "unsupported float width"); return; } } case analysis::Type::kInteger: { analysis::Integer* i_ty = val_ty->AsInteger(); switch (i_ty->width()) { case 64: { Instruction* ui64_inst = val_inst; if (i_ty->IsSigned()) { // Bitcast sint64 to uint64 ui64_inst = builder->AddUnaryOp(GetUint64Id(), spv::Op::OpBitcast, val_inst->result_id()); } // Break uint64 into 2x uint32 Instruction* lo_ui64_inst = builder->AddUnaryOp( GetUintId(), spv::Op::OpUConvert, ui64_inst->result_id()); Instruction* rshift_ui64_inst = builder->AddBinaryOp( GetUint64Id(), spv::Op::OpShiftRightLogical, ui64_inst->result_id(), builder->GetUintConstantId(32)); Instruction* hi_ui64_inst = builder->AddUnaryOp( GetUintId(), spv::Op::OpUConvert, rshift_ui64_inst->result_id()); val_ids->push_back(lo_ui64_inst->result_id()); val_ids->push_back(hi_ui64_inst->result_id()); return; } case 8: { Instruction* ui8_inst = val_inst; if (i_ty->IsSigned()) { // Bitcast sint8 to uint8 ui8_inst = builder->AddUnaryOp(GetUint8Id(), spv::Op::OpBitcast, val_inst->result_id()); } // Convert uint8 to uint32 Instruction* ui32_inst = builder->AddUnaryOp( GetUintId(), spv::Op::OpUConvert, ui8_inst->result_id()); val_ids->push_back(ui32_inst->result_id()); return; } case 32: { Instruction* ui32_inst = val_inst; if (i_ty->IsSigned()) { // Bitcast sint32 to uint32 ui32_inst = builder->AddUnaryOp(GetUintId(), spv::Op::OpBitcast, val_inst->result_id()); } // uint32 needs no further processing val_ids->push_back(ui32_inst->result_id()); return; } default: // TODO(greg-lunarg): Support non-32-bit int assert(false && "unsupported int width"); return; } } default: assert(false && "unsupported type"); return; } } void InstDebugPrintfPass::GenOutputCode( Instruction* printf_inst, uint32_t stage_idx, std::vector>* new_blocks) { BasicBlock* back_blk_ptr = &*new_blocks->back(); InstructionBuilder builder( context(), back_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); // Gen debug printf record validation-specific values. The format string // will have its id written. Vectors will need to be broken down into // component values. float16 will need to be converted to float32. Pointer // and uint64 will need to be converted to two uint32 values. float32 will // need to be bitcast to uint32. int32 will need to be bitcast to uint32. std::vector val_ids; bool is_first_operand = false; printf_inst->ForEachInId( [&is_first_operand, &val_ids, &builder, this](const uint32_t* iid) { // skip set operand if (!is_first_operand) { is_first_operand = true; return; } Instruction* opnd_inst = get_def_use_mgr()->GetDef(*iid); if (opnd_inst->opcode() == spv::Op::OpString) { uint32_t string_id_id = builder.GetUintConstantId(*iid); val_ids.push_back(string_id_id); } else { GenOutputValues(opnd_inst, &val_ids, &builder); } }); GenDebugStreamWrite(uid2offset_[printf_inst->unique_id()], stage_idx, val_ids, &builder); context()->KillInst(printf_inst); } void InstDebugPrintfPass::GenDebugPrintfCode( BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { // If not DebugPrintf OpExtInst, return. Instruction* printf_inst = &*ref_inst_itr; if (printf_inst->opcode() != spv::Op::OpExtInst) return; if (printf_inst->GetSingleWordInOperand(0) != ext_inst_printf_id_) return; if (printf_inst->GetSingleWordInOperand(1) != NonSemanticDebugPrintfDebugPrintf) return; // Initialize DefUse manager before dismantling module (void)get_def_use_mgr(); // Move original block's preceding instructions into first new block std::unique_ptr new_blk_ptr; MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr); new_blocks->push_back(std::move(new_blk_ptr)); // Generate instructions to output printf args to printf buffer GenOutputCode(printf_inst, stage_idx, new_blocks); // Caller expects at least two blocks with last block containing remaining // code, so end block after instrumentation, create remainder block, and // branch to it uint32_t rem_blk_id = TakeNextId(); std::unique_ptr rem_label(NewLabel(rem_blk_id)); BasicBlock* back_blk_ptr = &*new_blocks->back(); InstructionBuilder builder( context(), back_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); (void)builder.AddBranch(rem_blk_id); // Gen remainder block new_blk_ptr.reset(new BasicBlock(std::move(rem_label))); builder.SetInsertPoint(&*new_blk_ptr); // Move original block's remaining code into remainder block and add // to new blocks MovePostludeCode(ref_block_itr, &*new_blk_ptr); new_blocks->push_back(std::move(new_blk_ptr)); } void InstDebugPrintfPass::InitializeInstDebugPrintf() { // Initialize base class InitializeInstrument(); } Pass::Status InstDebugPrintfPass::ProcessImpl() { // Perform printf instrumentation on each entry point function in module InstProcessFunction pfn = [this](BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { return GenDebugPrintfCode(ref_inst_itr, ref_block_itr, stage_idx, new_blocks); }; (void)InstProcessEntryPointCallTree(pfn); // Remove DebugPrintf OpExtInstImport instruction Instruction* ext_inst_import_inst = get_def_use_mgr()->GetDef(ext_inst_printf_id_); context()->KillInst(ext_inst_import_inst); // If no remaining non-semantic instruction sets, remove non-semantic debug // info extension from module and feature manager bool non_sem_set_seen = false; for (auto c_itr = context()->module()->ext_inst_import_begin(); c_itr != context()->module()->ext_inst_import_end(); ++c_itr) { const std::string set_name = c_itr->GetInOperand(0).AsString(); if (spvtools::utils::starts_with(set_name, "NonSemantic.")) { non_sem_set_seen = true; break; } } if (!non_sem_set_seen) { for (auto c_itr = context()->module()->extension_begin(); c_itr != context()->module()->extension_end(); ++c_itr) { const std::string ext_name = c_itr->GetInOperand(0).AsString(); if (ext_name == "SPV_KHR_non_semantic_info") { context()->KillInst(&*c_itr); break; } } context()->get_feature_mgr()->RemoveExtension(kSPV_KHR_non_semantic_info); } return Status::SuccessWithChange; } Pass::Status InstDebugPrintfPass::Process() { ext_inst_printf_id_ = get_module()->GetExtInstImportId("NonSemantic.DebugPrintf"); if (ext_inst_printf_id_ == 0) return Status::SuccessWithoutChange; InitializeInstDebugPrintf(); return ProcessImpl(); } } // namespace opt } // namespace spvtools