// Copyright (c) 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_OPT_INSTRUCTION_H_ #define SOURCE_OPT_INSTRUCTION_H_ #include #include #include #include #include #include #include "NonSemanticShaderDebugInfo100.h" #include "OpenCLDebugInfo100.h" #include "source/binary.h" #include "source/common_debug_info.h" #include "source/latest_version_glsl_std_450_header.h" #include "source/latest_version_spirv_header.h" #include "source/opcode.h" #include "source/operand.h" #include "source/opt/reflect.h" #include "source/util/ilist_node.h" #include "source/util/small_vector.h" #include "source/util/string_utils.h" #include "spirv-tools/libspirv.h" constexpr uint32_t kNoDebugScope = 0; constexpr uint32_t kNoInlinedAt = 0; namespace spvtools { namespace opt { class Function; class IRContext; class Module; class InstructionList; // Relaxed logical addressing: // // In the logical addressing model, pointers cannot be stored or loaded. This // is a useful assumption because it simplifies the aliasing significantly. // However, for the purpose of legalizing code generated from HLSL, we will have // to allow storing and loading of pointers to opaque objects and runtime // arrays. This relaxation of the rule still implies that function and private // scope variables do not have any aliasing, so we can treat them as before. // This will be call the relaxed logical addressing model. // // This relaxation of the rule will be allowed by |GetBaseAddress|, but it will // enforce that no other pointers are stored or loaded. // About operand: // // In the SPIR-V specification, the term "operand" is used to mean any single // SPIR-V word following the leading wordcount-opcode word. Here, the term // "operand" is used to mean a *logical* operand. A logical operand may consist // of multiple SPIR-V words, which together make up the same component. For // example, a logical operand of a 64-bit integer needs two words to express. // // Further, we categorize logical operands into *in* and *out* operands. // In operands are operands actually serve as input to operations, while out // operands are operands that represent ids generated from operations (result // type id or result id). For example, for "OpIAdd %rtype %rid %inop1 %inop2", // "%inop1" and "%inop2" are in operands, while "%rtype" and "%rid" are out // operands. // A *logical* operand to a SPIR-V instruction. It can be the type id, result // id, or other additional operands carried in an instruction. struct Operand { using OperandData = utils::SmallVector; Operand(spv_operand_type_t t, OperandData&& w) : type(t), words(std::move(w)) {} Operand(spv_operand_type_t t, const OperandData& w) : type(t), words(w) {} template Operand(spv_operand_type_t t, InputIt firstOperandData, InputIt lastOperandData) : type(t), words(firstOperandData, lastOperandData) {} spv_operand_type_t type; // Type of this logical operand. OperandData words; // Binary segments of this logical operand. uint32_t AsId() const { assert(spvIsIdType(type)); assert(words.size() == 1); return words[0]; } // Returns a string operand as a std::string. std::string AsString() const { assert(type == SPV_OPERAND_TYPE_LITERAL_STRING); return spvtools::utils::MakeString(words); } // Returns a literal integer operand as a uint64_t uint64_t AsLiteralUint64() const { assert(type == SPV_OPERAND_TYPE_LITERAL_INTEGER || type == SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER || type == SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER || type == SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER); assert(1 <= words.size()); assert(words.size() <= 2); uint64_t result = 0; if (words.size() > 0) { // Needed to avoid maybe-uninitialized GCC warning uint32_t low = words[0]; result = uint64_t(low); } if (words.size() > 1) { uint32_t high = words[1]; result = result | (uint64_t(high) << 32); } return result; } friend bool operator==(const Operand& o1, const Operand& o2) { return o1.type == o2.type && o1.words == o2.words; } // TODO(antiagainst): create fields for literal number kind, width, etc. }; inline bool operator!=(const Operand& o1, const Operand& o2) { return !(o1 == o2); } // This structure is used to represent a DebugScope instruction from // the OpenCL.100.DebugInfo extended instruction set. Note that we can // ignore the result id of DebugScope instruction because it is not // used for anything. We do not keep it to reduce the size of // structure. // TODO: Let validator check that the result id is not used anywhere. class DebugScope { public: DebugScope(uint32_t lexical_scope, uint32_t inlined_at) : lexical_scope_(lexical_scope), inlined_at_(inlined_at) {} inline bool operator!=(const DebugScope& d) const { return lexical_scope_ != d.lexical_scope_ || inlined_at_ != d.inlined_at_; } // Accessor functions for |lexical_scope_|. uint32_t GetLexicalScope() const { return lexical_scope_; } void SetLexicalScope(uint32_t scope) { lexical_scope_ = scope; } // Accessor functions for |inlined_at_|. uint32_t GetInlinedAt() const { return inlined_at_; } void SetInlinedAt(uint32_t at) { inlined_at_ = at; } // Pushes the binary segments for this DebugScope instruction into // the back of *|binary|. void ToBinary(uint32_t type_id, uint32_t result_id, uint32_t ext_set, std::vector* binary) const; private: // The result id of the lexical scope in which this debug scope is // contained. The value is kNoDebugScope if there is no scope. uint32_t lexical_scope_; // The result id of DebugInlinedAt if instruction in this debug scope // is inlined. The value is kNoInlinedAt if it is not inlined. uint32_t inlined_at_; }; // A SPIR-V instruction. It contains the opcode and any additional logical // operand, including the result id (if any) and result type id (if any). It // may also contain line-related debug instruction (OpLine, OpNoLine) directly // appearing before this instruction. Note that the result id of an instruction // should never change after the instruction being built. If the result id // needs to change, the user should create a new instruction instead. class Instruction : public utils::IntrusiveNodeBase { public: using OperandList = std::vector; using iterator = OperandList::iterator; using const_iterator = OperandList::const_iterator; // Creates a default OpNop instruction. // This exists solely for containers that can't do without. Should be removed. Instruction() : utils::IntrusiveNodeBase(), context_(nullptr), opcode_(spv::Op::OpNop), has_type_id_(false), has_result_id_(false), unique_id_(0), dbg_scope_(kNoDebugScope, kNoInlinedAt) {} // Creates a default OpNop instruction. Instruction(IRContext*); // Creates an instruction with the given opcode |op| and no additional logical // operands. Instruction(IRContext*, spv::Op); // Creates an instruction using the given spv_parsed_instruction_t |inst|. All // the data inside |inst| will be copied and owned in this instance. And keep // record of line-related debug instructions |dbg_line| ahead of this // instruction, if any. Instruction(IRContext* c, const spv_parsed_instruction_t& inst, std::vector&& dbg_line = {}); Instruction(IRContext* c, const spv_parsed_instruction_t& inst, const DebugScope& dbg_scope); // Creates an instruction with the given opcode |op|, type id: |ty_id|, // result id: |res_id| and input operands: |in_operands|. Instruction(IRContext* c, spv::Op op, uint32_t ty_id, uint32_t res_id, const OperandList& in_operands); // TODO: I will want to remove these, but will first have to remove the use of // std::vector. Instruction(const Instruction&) = default; Instruction& operator=(const Instruction&) = default; Instruction(Instruction&&); Instruction& operator=(Instruction&&); ~Instruction() override = default; // Returns a newly allocated instruction that has the same operands, result, // and type as |this|. The new instruction is not linked into any list. // It is the responsibility of the caller to make sure that the storage is // removed. It is the caller's responsibility to make sure that there is only // one instruction for each result id. Instruction* Clone(IRContext* c) const; IRContext* context() const { return context_; } spv::Op opcode() const { return opcode_; } // Sets the opcode of this instruction to a specific opcode. Note this may // invalidate the instruction. // TODO(qining): Remove this function when instruction building and insertion // is well implemented. void SetOpcode(spv::Op op) { opcode_ = op; } uint32_t type_id() const { return has_type_id_ ? GetSingleWordOperand(0) : 0; } uint32_t result_id() const { return has_result_id_ ? GetSingleWordOperand(has_type_id_ ? 1 : 0) : 0; } uint32_t unique_id() const { assert(unique_id_ != 0); return unique_id_; } // Returns the vector of line-related debug instructions attached to this // instruction and the caller can directly modify them. std::vector& dbg_line_insts() { return dbg_line_insts_; } const std::vector& dbg_line_insts() const { return dbg_line_insts_; } const Instruction* dbg_line_inst() const { return dbg_line_insts_.empty() ? nullptr : &dbg_line_insts_[0]; } // Clear line-related debug instructions attached to this instruction. void clear_dbg_line_insts() { dbg_line_insts_.clear(); } // Same semantics as in the base class except the list the InstructionList // containing |pos| will now assume ownership of |this|. // inline void MoveBefore(Instruction* pos); // inline void InsertAfter(Instruction* pos); // Begin and end iterators for operands. iterator begin() { return operands_.begin(); } iterator end() { return operands_.end(); } const_iterator begin() const { return operands_.cbegin(); } const_iterator end() const { return operands_.cend(); } // Const begin and end iterators for operands. const_iterator cbegin() const { return operands_.cbegin(); } const_iterator cend() const { return operands_.cend(); } // Gets the number of logical operands. uint32_t NumOperands() const { return static_cast(operands_.size()); } // Gets the number of SPIR-V words occupied by all logical operands. uint32_t NumOperandWords() const { return NumInOperandWords() + TypeResultIdCount(); } // Gets the |index|-th logical operand. inline Operand& GetOperand(uint32_t index); inline const Operand& GetOperand(uint32_t index) const; // Adds |operand| to the list of operands of this instruction. // It is the responsibility of the caller to make sure // that the instruction remains valid. inline void AddOperand(Operand&& operand); // Gets the |index|-th logical operand as a single SPIR-V word. This method is // not expected to be used with logical operands consisting of multiple SPIR-V // words. uint32_t GetSingleWordOperand(uint32_t index) const; // Sets the |index|-th in-operand's data to the given |data|. inline void SetInOperand(uint32_t index, Operand::OperandData&& data); // Sets the |index|-th operand's data to the given |data|. // This is for in-operands modification only, but with |index| expressed in // terms of operand index rather than in-operand index. inline void SetOperand(uint32_t index, Operand::OperandData&& data); // Replace all of the in operands with those in |new_operands|. inline void SetInOperands(OperandList&& new_operands); // Sets the result type id. inline void SetResultType(uint32_t ty_id); inline bool HasResultType() const { return has_type_id_; } // Sets the result id inline void SetResultId(uint32_t res_id); inline bool HasResultId() const { return has_result_id_; } // Sets DebugScope. inline void SetDebugScope(const DebugScope& scope); inline const DebugScope& GetDebugScope() const { return dbg_scope_; } // Add debug line inst. Renew result id if Debug[No]Line void AddDebugLine(const Instruction* inst); // Updates DebugInlinedAt of DebugScope and OpLine. void UpdateDebugInlinedAt(uint32_t new_inlined_at); // Clear line-related debug instructions attached to this instruction // along with def-use entries. void ClearDbgLineInsts(); // Return true if Shader100:Debug[No]Line bool IsDebugLineInst() const; // Return true if Op[No]Line or Shader100:Debug[No]Line bool IsLineInst() const; // Return true if OpLine or Shader100:DebugLine bool IsLine() const; // Return true if OpNoLine or Shader100:DebugNoLine bool IsNoLine() const; inline uint32_t GetDebugInlinedAt() const { return dbg_scope_.GetInlinedAt(); } // Updates lexical scope of DebugScope and OpLine. void UpdateLexicalScope(uint32_t scope); // Updates OpLine and DebugScope based on the information of |from|. void UpdateDebugInfoFrom(const Instruction* from); // Remove the |index|-th operand void RemoveOperand(uint32_t index) { operands_.erase(operands_.begin() + index); } // Insert an operand before the |index|-th operand void InsertOperand(uint32_t index, Operand&& operand) { operands_.insert(operands_.begin() + index, operand); } // The following methods are similar to the above, but are for in operands. uint32_t NumInOperands() const { return static_cast(operands_.size() - TypeResultIdCount()); } uint32_t NumInOperandWords() const; Operand& GetInOperand(uint32_t index) { return GetOperand(index + TypeResultIdCount()); } const Operand& GetInOperand(uint32_t index) const { return GetOperand(index + TypeResultIdCount()); } uint32_t GetSingleWordInOperand(uint32_t index) const { return GetSingleWordOperand(index + TypeResultIdCount()); } void RemoveInOperand(uint32_t index) { operands_.erase(operands_.begin() + index + TypeResultIdCount()); } // Returns true if this instruction is OpNop. inline bool IsNop() const; // Turns this instruction to OpNop. This does not clear out all preceding // line-related debug instructions. inline void ToNop(); // Runs the given function |f| on this instruction and optionally on the // preceding debug line instructions. The function will always be run // if this is itself a debug line instruction. inline void ForEachInst(const std::function& f, bool run_on_debug_line_insts = false); inline void ForEachInst(const std::function& f, bool run_on_debug_line_insts = false) const; // Runs the given function |f| on this instruction and optionally on the // preceding debug line instructions. The function will always be run // if this is itself a debug line instruction. If |f| returns false, // iteration is terminated and this function returns false. inline bool WhileEachInst(const std::function& f, bool run_on_debug_line_insts = false); inline bool WhileEachInst(const std::function& f, bool run_on_debug_line_insts = false) const; // Runs the given function |f| on all operand ids. // // |f| should not transform an ID into 0, as 0 is an invalid ID. inline void ForEachId(const std::function& f); inline void ForEachId(const std::function& f) const; // Runs the given function |f| on all "in" operand ids. inline void ForEachInId(const std::function& f); inline void ForEachInId(const std::function& f) const; // Runs the given function |f| on all "in" operand ids. If |f| returns false, // iteration is terminated and this function returns false. inline bool WhileEachInId(const std::function& f); inline bool WhileEachInId( const std::function& f) const; // Runs the given function |f| on all "in" operands. inline void ForEachInOperand(const std::function& f); inline void ForEachInOperand( const std::function& f) const; // Runs the given function |f| on all "in" operands. If |f| returns false, // iteration is terminated and this function return false. inline bool WhileEachInOperand(const std::function& f); inline bool WhileEachInOperand( const std::function& f) const; // Returns true if it's an OpBranchConditional instruction // with branch weights. bool HasBranchWeights() const; // Returns true if any operands can be labels inline bool HasLabels() const; // Pushes the binary segments for this instruction into the back of *|binary|. void ToBinaryWithoutAttachedDebugInsts(std::vector* binary) const; // Replaces the operands to the instruction with |new_operands|. The caller // is responsible for building a complete and valid list of operands for // this instruction. void ReplaceOperands(const OperandList& new_operands); // Returns true if the instruction annotates an id with a decoration. inline bool IsDecoration() const; // Returns true if the instruction is known to be a load from read-only // memory. bool IsReadOnlyLoad() const; // Returns the instruction that gives the base address of an address // calculation. The instruction must be a load, as defined by |IsLoad|, // store, copy, or access chain instruction. In logical addressing mode, will // return an OpVariable or OpFunctionParameter instruction. For relaxed // logical addressing, it would also return a load of a pointer to an opaque // object. For physical addressing mode, could return other types of // instructions. Instruction* GetBaseAddress() const; // Returns true if the instruction loads from memory or samples an image, and // stores the result into an id. It considers only core instructions. // Memory-to-memory instructions are not considered loads. inline bool IsLoad() const; // Returns true if the instruction generates a pointer that is definitely // read-only. This is determined by analysing the pointer type's storage // class and decorations that target the pointer's id. It does not analyse // other instructions that the pointer may be derived from. Thus if 'true' is // returned, the pointer is definitely read-only, while if 'false' is returned // it is possible that the pointer may actually be read-only if it is derived // from another pointer that is decorated as read-only. bool IsReadOnlyPointer() const; // The following functions check for the various descriptor types defined in // the Vulkan specification section 13.1. // Returns true if the instruction defines a pointer type that points to a // storage image. bool IsVulkanStorageImage() const; // Returns true if the instruction defines a pointer type that points to a // sampled image. bool IsVulkanSampledImage() const; // Returns true if the instruction defines a pointer type that points to a // storage texel buffer. bool IsVulkanStorageTexelBuffer() const; // Returns true if the instruction defines a pointer type that points to a // storage buffer. bool IsVulkanStorageBuffer() const; // Returns true if the instruction defines a variable in StorageBuffer or // Uniform storage class with a pointer type that points to a storage buffer. bool IsVulkanStorageBufferVariable() const; // Returns true if the instruction defines a pointer type that points to a // uniform buffer. bool IsVulkanUniformBuffer() const; // Returns true if the instruction is an atom operation that uses original // value. inline bool IsAtomicWithLoad() const; // Returns true if the instruction is an atom operation. inline bool IsAtomicOp() const; // Returns true if this instruction is a branch or switch instruction (either // conditional or not). bool IsBranch() const { return spvOpcodeIsBranch(opcode()); } // Returns true if this instruction causes the function to finish execution // and return to its caller bool IsReturn() const { return spvOpcodeIsReturn(opcode()); } // Returns true if this instruction exits this function or aborts execution. bool IsReturnOrAbort() const { return spvOpcodeIsReturnOrAbort(opcode()); } // Returns true if this instruction is a basic block terminator. bool IsBlockTerminator() const { return spvOpcodeIsBlockTerminator(opcode()); } // Returns true if |this| is an instruction that define an opaque type. Since // runtime array have similar characteristics they are included as opaque // types. bool IsOpaqueType() const; // Returns true if |this| is an instruction which could be folded into a // constant value. bool IsFoldable() const; // Returns true if |this| is an instruction which could be folded into a // constant value by |FoldScalar|. bool IsFoldableByFoldScalar() const; // Returns true if we are allowed to fold or otherwise manipulate the // instruction that defines |id| in the given context. This includes not // handling NaN values. bool IsFloatingPointFoldingAllowed() const; inline bool operator==(const Instruction&) const; inline bool operator!=(const Instruction&) const; inline bool operator<(const Instruction&) const; // Takes ownership of the instruction owned by |i| and inserts it immediately // before |this|. Returns the inserted instruction. Instruction* InsertBefore(std::unique_ptr&& i); // Takes ownership of the instructions in |list| and inserts them in order // immediately before |this|. Returns the first inserted instruction. // Assumes the list is non-empty. Instruction* InsertBefore(std::vector>&& list); using utils::IntrusiveNodeBase::InsertBefore; // Returns true if |this| is an instruction defining a constant, but not a // Spec constant. inline bool IsConstant() const; // Returns true if |this| is an instruction with an opcode safe to move bool IsOpcodeCodeMotionSafe() const; // Pretty-prints |inst|. // // Provides the disassembly of a specific instruction. Utilizes |inst|'s // context to provide the correct interpretation of types, constants, etc. // // |options| are the disassembly options. SPV_BINARY_TO_TEXT_OPTION_NO_HEADER // is always added to |options|. std::string PrettyPrint(uint32_t options = 0u) const; // Returns true if the result can be a vector and the result of each component // depends on the corresponding component of any vector inputs. bool IsScalarizable() const; // Return true if the only effect of this instructions is the result. bool IsOpcodeSafeToDelete() const; // Returns true if it is valid to use the result of |inst| as the base // pointer for a load or store. In this case, valid is defined by the relaxed // logical addressing rules when using logical addressing. Normal validation // rules for physical addressing. bool IsValidBasePointer() const; // Returns debug opcode of an OpenCL.100.DebugInfo instruction. If // it is not an OpenCL.100.DebugInfo instruction, just returns // OpenCLDebugInfo100InstructionsMax. OpenCLDebugInfo100Instructions GetOpenCL100DebugOpcode() const; // Returns debug opcode of an NonSemantic.Shader.DebugInfo.100 instruction. If // it is not an NonSemantic.Shader.DebugInfo.100 instruction, just return // NonSemanticShaderDebugInfo100InstructionsMax. NonSemanticShaderDebugInfo100Instructions GetShader100DebugOpcode() const; // Returns debug opcode of an OpenCL.100.DebugInfo or // NonSemantic.Shader.DebugInfo.100 instruction. Since these overlap, we // return the OpenCLDebugInfo code CommonDebugInfoInstructions GetCommonDebugOpcode() const; // Returns true if it is an OpenCL.DebugInfo.100 instruction. bool IsOpenCL100DebugInstr() const { return GetOpenCL100DebugOpcode() != OpenCLDebugInfo100InstructionsMax; } // Returns true if it is an NonSemantic.Shader.DebugInfo.100 instruction. bool IsShader100DebugInstr() const { return GetShader100DebugOpcode() != NonSemanticShaderDebugInfo100InstructionsMax; } bool IsCommonDebugInstr() const { return GetCommonDebugOpcode() != CommonDebugInfoInstructionsMax; } // Returns true if this instructions a non-semantic instruction. bool IsNonSemanticInstruction() const; // Dump this instruction on stderr. Useful when running interactive // debuggers. void Dump() const; private: // Returns the total count of result type id and result id. uint32_t TypeResultIdCount() const { if (has_type_id_ && has_result_id_) return 2; if (has_type_id_ || has_result_id_) return 1; return 0; } // Returns true if the instruction generates a read-only pointer, with the // same caveats documented in the comment for IsReadOnlyPointer. The first // version assumes the module is a shader module. The second assumes a // kernel. bool IsReadOnlyPointerShaders() const; bool IsReadOnlyPointerKernel() const; // Returns true if the result of |inst| can be used as the base image for an // instruction that samples a image, reads an image, or writes to an image. bool IsValidBaseImage() const; IRContext* context_; // IR Context spv::Op opcode_; // Opcode bool has_type_id_; // True if the instruction has a type id bool has_result_id_; // True if the instruction has a result id uint32_t unique_id_; // Unique instruction id // All logical operands, including result type id and result id. OperandList operands_; // Op[No]Line or Debug[No]Line instructions preceding this instruction. Note // that for Instructions representing Op[No]Line or Debug[No]Line themselves, // this field should be empty. std::vector dbg_line_insts_; // DebugScope that wraps this instruction. DebugScope dbg_scope_; friend InstructionList; }; // Pretty-prints |inst| to |str| and returns |str|. // // Provides the disassembly of a specific instruction. Utilizes |inst|'s context // to provide the correct interpretation of types, constants, etc. // // Disassembly uses raw ids (not pretty printed names). std::ostream& operator<<(std::ostream& str, const Instruction& inst); inline bool Instruction::operator==(const Instruction& other) const { return unique_id() == other.unique_id(); } inline bool Instruction::operator!=(const Instruction& other) const { return !(*this == other); } inline bool Instruction::operator<(const Instruction& other) const { return unique_id() < other.unique_id(); } inline Operand& Instruction::GetOperand(uint32_t index) { assert(index < operands_.size() && "operand index out of bound"); return operands_[index]; } inline const Operand& Instruction::GetOperand(uint32_t index) const { assert(index < operands_.size() && "operand index out of bound"); return operands_[index]; } inline void Instruction::AddOperand(Operand&& operand) { operands_.push_back(std::move(operand)); } inline void Instruction::SetInOperand(uint32_t index, Operand::OperandData&& data) { SetOperand(index + TypeResultIdCount(), std::move(data)); } inline void Instruction::SetOperand(uint32_t index, Operand::OperandData&& data) { assert(index < operands_.size() && "operand index out of bound"); assert(index >= TypeResultIdCount() && "operand is not a in-operand"); operands_[index].words = std::move(data); } inline void Instruction::SetInOperands(OperandList&& new_operands) { // Remove the old in operands. operands_.erase(operands_.begin() + TypeResultIdCount(), operands_.end()); // Add the new in operands. operands_.insert(operands_.end(), new_operands.begin(), new_operands.end()); } inline void Instruction::SetResultId(uint32_t res_id) { // TODO(dsinclair): Allow setting a result id if there wasn't one // previously. Need to make room in the operands_ array to place the result, // and update the has_result_id_ flag. assert(has_result_id_); // TODO(dsinclair): Allow removing the result id. This needs to make sure, // if there was a result id previously to remove it from the operands_ array // and reset the has_result_id_ flag. assert(res_id != 0); auto ridx = has_type_id_ ? 1 : 0; operands_[ridx].words = {res_id}; } inline void Instruction::SetDebugScope(const DebugScope& scope) { dbg_scope_ = scope; for (auto& i : dbg_line_insts_) { i.dbg_scope_ = scope; } } inline void Instruction::SetResultType(uint32_t ty_id) { // TODO(dsinclair): Allow setting a type id if there wasn't one // previously. Need to make room in the operands_ array to place the result, // and update the has_type_id_ flag. assert(has_type_id_); // TODO(dsinclair): Allow removing the type id. This needs to make sure, // if there was a type id previously to remove it from the operands_ array // and reset the has_type_id_ flag. assert(ty_id != 0); operands_.front().words = {ty_id}; } inline bool Instruction::IsNop() const { return opcode_ == spv::Op::OpNop && !has_type_id_ && !has_result_id_ && operands_.empty(); } inline void Instruction::ToNop() { opcode_ = spv::Op::OpNop; has_type_id_ = false; has_result_id_ = false; operands_.clear(); } inline bool Instruction::WhileEachInst( const std::function& f, bool run_on_debug_line_insts) { if (run_on_debug_line_insts) { for (auto& dbg_line : dbg_line_insts_) { if (!f(&dbg_line)) return false; } } return f(this); } inline bool Instruction::WhileEachInst( const std::function& f, bool run_on_debug_line_insts) const { if (run_on_debug_line_insts) { for (auto& dbg_line : dbg_line_insts_) { if (!f(&dbg_line)) return false; } } return f(this); } inline void Instruction::ForEachInst(const std::function& f, bool run_on_debug_line_insts) { WhileEachInst( [&f](Instruction* inst) { f(inst); return true; }, run_on_debug_line_insts); } inline void Instruction::ForEachInst( const std::function& f, bool run_on_debug_line_insts) const { WhileEachInst( [&f](const Instruction* inst) { f(inst); return true; }, run_on_debug_line_insts); } inline void Instruction::ForEachId(const std::function& f) { for (auto& operand : operands_) if (spvIsIdType(operand.type)) f(&operand.words[0]); } inline void Instruction::ForEachId( const std::function& f) const { for (const auto& operand : operands_) if (spvIsIdType(operand.type)) f(&operand.words[0]); } inline bool Instruction::WhileEachInId( const std::function& f) { for (auto& operand : operands_) { if (spvIsInIdType(operand.type) && !f(&operand.words[0])) { return false; } } return true; } inline bool Instruction::WhileEachInId( const std::function& f) const { for (const auto& operand : operands_) { if (spvIsInIdType(operand.type) && !f(&operand.words[0])) { return false; } } return true; } inline void Instruction::ForEachInId(const std::function& f) { WhileEachInId([&f](uint32_t* id) { f(id); return true; }); } inline void Instruction::ForEachInId( const std::function& f) const { WhileEachInId([&f](const uint32_t* id) { f(id); return true; }); } inline bool Instruction::WhileEachInOperand( const std::function& f) { for (auto& operand : operands_) { switch (operand.type) { case SPV_OPERAND_TYPE_RESULT_ID: case SPV_OPERAND_TYPE_TYPE_ID: break; default: if (!f(&operand.words[0])) return false; break; } } return true; } inline bool Instruction::WhileEachInOperand( const std::function& f) const { for (const auto& operand : operands_) { switch (operand.type) { case SPV_OPERAND_TYPE_RESULT_ID: case SPV_OPERAND_TYPE_TYPE_ID: break; default: if (!f(&operand.words[0])) return false; break; } } return true; } inline void Instruction::ForEachInOperand( const std::function& f) { WhileEachInOperand([&f](uint32_t* operand) { f(operand); return true; }); } inline void Instruction::ForEachInOperand( const std::function& f) const { WhileEachInOperand([&f](const uint32_t* operand) { f(operand); return true; }); } inline bool Instruction::HasLabels() const { switch (opcode_) { case spv::Op::OpSelectionMerge: case spv::Op::OpBranch: case spv::Op::OpLoopMerge: case spv::Op::OpBranchConditional: case spv::Op::OpSwitch: case spv::Op::OpPhi: return true; break; default: break; } return false; } bool Instruction::IsDecoration() const { return spvOpcodeIsDecoration(opcode()); } bool Instruction::IsLoad() const { return spvOpcodeIsLoad(opcode()); } bool Instruction::IsAtomicWithLoad() const { return spvOpcodeIsAtomicWithLoad(opcode()); } bool Instruction::IsAtomicOp() const { return spvOpcodeIsAtomicOp(opcode()); } bool Instruction::IsConstant() const { return IsConstantInst(opcode()) && !IsSpecConstantInst(opcode()); } } // namespace opt } // namespace spvtools #endif // SOURCE_OPT_INSTRUCTION_H_