// Copyright (c) 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/fuzz/transformation_access_chain.h" #include #include "source/fuzz/fuzzer_util.h" #include "source/fuzz/instruction_descriptor.h" namespace spvtools { namespace fuzz { TransformationAccessChain::TransformationAccessChain( const spvtools::fuzz::protobufs::TransformationAccessChain& message) : message_(message) {} TransformationAccessChain::TransformationAccessChain( uint32_t fresh_id, uint32_t pointer_id, const std::vector& index_id, const protobufs::InstructionDescriptor& instruction_to_insert_before, const std::vector>& fresh_ids_for_clamping) { message_.set_fresh_id(fresh_id); message_.set_pointer_id(pointer_id); for (auto id : index_id) { message_.add_index_id(id); } *message_.mutable_instruction_to_insert_before() = instruction_to_insert_before; for (auto clamping_ids_pair : fresh_ids_for_clamping) { protobufs::UInt32Pair pair; pair.set_first(clamping_ids_pair.first); pair.set_second(clamping_ids_pair.second); *message_.add_fresh_ids_for_clamping() = pair; } } bool TransformationAccessChain::IsApplicable( opt::IRContext* ir_context, const TransformationContext& /*unused*/) const { // Keep track of the fresh ids used to make sure that they are distinct. std::set fresh_ids_used; // The result id must be fresh. if (!CheckIdIsFreshAndNotUsedByThisTransformation( message_.fresh_id(), ir_context, &fresh_ids_used)) { return false; } // The pointer id must exist and have a type. auto pointer = ir_context->get_def_use_mgr()->GetDef(message_.pointer_id()); if (!pointer || !pointer->type_id()) { return false; } // The type must indeed be a pointer. auto pointer_type = ir_context->get_def_use_mgr()->GetDef(pointer->type_id()); if (pointer_type->opcode() != SpvOpTypePointer) { return false; } // The described instruction to insert before must exist and be a suitable // point where an OpAccessChain instruction could be inserted. auto instruction_to_insert_before = FindInstruction(message_.instruction_to_insert_before(), ir_context); if (!instruction_to_insert_before) { return false; } if (!fuzzerutil::CanInsertOpcodeBeforeInstruction( SpvOpAccessChain, instruction_to_insert_before)) { return false; } // Do not allow making an access chain from a null or undefined pointer, as // we do not want to allow accessing such pointers. This might be acceptable // in dead blocks, but we conservatively avoid it. switch (pointer->opcode()) { case SpvOpConstantNull: case SpvOpUndef: assert( false && "Access chains should not be created from null/undefined pointers"); return false; default: break; } // The pointer on which the access chain is to be based needs to be available // (according to dominance rules) at the insertion point. if (!fuzzerutil::IdIsAvailableBeforeInstruction( ir_context, instruction_to_insert_before, message_.pointer_id())) { return false; } // We now need to use the given indices to walk the type structure of the // base type of the pointer, making sure that (a) the indices correspond to // integers, and (b) these integer values are in-bounds. // Start from the base type of the pointer. uint32_t subobject_type_id = pointer_type->GetSingleWordInOperand(1); int id_pairs_used = 0; // Consider the given index ids in turn. for (auto index_id : message_.index_id()) { // The index value will correspond to the value of the index if the object // is a struct, otherwise the value 0 will be used. uint32_t index_value; // Check whether the object is a struct. if (ir_context->get_def_use_mgr()->GetDef(subobject_type_id)->opcode() == SpvOpTypeStruct) { // It is a struct: we need to retrieve the integer value. bool successful; std::tie(successful, index_value) = GetIndexValue(ir_context, index_id, subobject_type_id); if (!successful) { return false; } } else { // It is not a struct: the index will need clamping. if (message_.fresh_ids_for_clamping().size() <= id_pairs_used) { // We don't have enough ids return false; } // Get two new ids to use and update the amount used. protobufs::UInt32Pair fresh_ids = message_.fresh_ids_for_clamping()[id_pairs_used++]; // Valid ids need to have been given if (fresh_ids.first() == 0 || fresh_ids.second() == 0) { return false; } // Check that the ids are actually fresh and not already used by this // transformation. if (!CheckIdIsFreshAndNotUsedByThisTransformation( fresh_ids.first(), ir_context, &fresh_ids_used) || !CheckIdIsFreshAndNotUsedByThisTransformation( fresh_ids.second(), ir_context, &fresh_ids_used)) { return false; } if (!ValidIndexToComposite(ir_context, index_id, subobject_type_id)) { return false; } // Perform the clamping using the fresh ids at our disposal. auto index_instruction = ir_context->get_def_use_mgr()->GetDef(index_id); uint32_t bound = fuzzerutil::GetBoundForCompositeIndex( *ir_context->get_def_use_mgr()->GetDef(subobject_type_id), ir_context); // The module must have an integer constant of value bound-1 of the same // type as the index. if (!fuzzerutil::MaybeGetIntegerConstantFromValueAndType( ir_context, bound - 1, index_instruction->type_id())) { return false; } // The module must have the definition of bool type to make a comparison. if (!fuzzerutil::MaybeGetBoolType(ir_context)) { return false; } // The index is not necessarily a constant, so we may not know its value. // We can use index 0 because the components of a non-struct composite // all have the same type, and index 0 is always in bounds. index_value = 0; } // Try to walk down the type using this index. This will yield 0 if the // type is not a composite or the index is out of bounds, and the id of // the next type otherwise. subobject_type_id = fuzzerutil::WalkOneCompositeTypeIndex( ir_context, subobject_type_id, index_value); if (!subobject_type_id) { // Either the type was not a composite (so that too many indices were // provided), or the index was out of bounds. return false; } } // At this point, |subobject_type_id| is the type of the value targeted by // the new access chain. The result type of the access chain should be a // pointer to this type, with the same storage class as for the original // pointer. Such a pointer type needs to exist in the module. // // We do not use the type manager to look up this type, due to problems // associated with pointers to isomorphic structs being regarded as the same. return fuzzerutil::MaybeGetPointerType( ir_context, subobject_type_id, static_cast( pointer_type->GetSingleWordInOperand(0))) != 0; } void TransformationAccessChain::Apply( opt::IRContext* ir_context, TransformationContext* transformation_context) const { // The operands to the access chain are the pointer followed by the indices. // The result type of the access chain is determined by where the indices // lead. We thus push the pointer to a sequence of operands, and then follow // the indices, pushing each to the operand list and tracking the type // obtained by following it. Ultimately this yields the type of the // component reached by following all the indices, and the result type is // a pointer to this component type. opt::Instruction::OperandList operands; // Add the pointer id itself. operands.push_back({SPV_OPERAND_TYPE_ID, {message_.pointer_id()}}); // Start walking the indices, starting with the pointer's base type. auto pointer_type = ir_context->get_def_use_mgr()->GetDef( ir_context->get_def_use_mgr()->GetDef(message_.pointer_id())->type_id()); uint32_t subobject_type_id = pointer_type->GetSingleWordInOperand(1); uint32_t id_pairs_used = 0; // Go through the index ids in turn. for (auto index_id : message_.index_id()) { uint32_t index_value; // Actual id to be used in the instruction: the original id // or the clamped one. uint32_t new_index_id; // Check whether the object is a struct. if (ir_context->get_def_use_mgr()->GetDef(subobject_type_id)->opcode() == SpvOpTypeStruct) { // It is a struct: we need to retrieve the integer value. index_value = GetIndexValue(ir_context, index_id, subobject_type_id).second; new_index_id = index_id; } else { // It is not a struct: the index will need clamping. // Get two new ids to use and update the amount used. protobufs::UInt32Pair fresh_ids = message_.fresh_ids_for_clamping()[id_pairs_used++]; // Perform the clamping using the fresh ids at our disposal. // The module will not be changed if |add_clamping_instructions| is not // set. auto index_instruction = ir_context->get_def_use_mgr()->GetDef(index_id); uint32_t bound = fuzzerutil::GetBoundForCompositeIndex( *ir_context->get_def_use_mgr()->GetDef(subobject_type_id), ir_context); auto bound_minus_one_id = fuzzerutil::MaybeGetIntegerConstantFromValueAndType( ir_context, bound - 1, index_instruction->type_id()); assert(bound_minus_one_id && "A constant of value bound - 1 and the same type as the index " "must exist as a precondition."); uint32_t bool_type_id = fuzzerutil::MaybeGetBoolType(ir_context); assert(bool_type_id && "An OpTypeBool instruction must exist as a precondition."); auto int_type_inst = ir_context->get_def_use_mgr()->GetDef(index_instruction->type_id()); // Clamp the integer and add the corresponding instructions in the module // if |add_clamping_instructions| is set. auto instruction_to_insert_before = FindInstruction(message_.instruction_to_insert_before(), ir_context); // Compare the index with the bound via an instruction of the form: // %fresh_ids.first = OpULessThanEqual %bool %int_id %bound_minus_one. fuzzerutil::UpdateModuleIdBound(ir_context, fresh_ids.first()); instruction_to_insert_before->InsertBefore(MakeUnique( ir_context, SpvOpULessThanEqual, bool_type_id, fresh_ids.first(), opt::Instruction::OperandList( {{SPV_OPERAND_TYPE_ID, {index_instruction->result_id()}}, {SPV_OPERAND_TYPE_ID, {bound_minus_one_id}}}))); // Select the index if in-bounds, otherwise one less than the bound: // %fresh_ids.second = OpSelect %int_type %fresh_ids.first %int_id // %bound_minus_one fuzzerutil::UpdateModuleIdBound(ir_context, fresh_ids.second()); instruction_to_insert_before->InsertBefore(MakeUnique( ir_context, SpvOpSelect, int_type_inst->result_id(), fresh_ids.second(), opt::Instruction::OperandList( {{SPV_OPERAND_TYPE_ID, {fresh_ids.first()}}, {SPV_OPERAND_TYPE_ID, {index_instruction->result_id()}}, {SPV_OPERAND_TYPE_ID, {bound_minus_one_id}}}))); new_index_id = fresh_ids.second(); index_value = 0; } // Add the correct index id to the operands. operands.push_back({SPV_OPERAND_TYPE_ID, {new_index_id}}); // Walk to the next type in the composite object using this index. subobject_type_id = fuzzerutil::WalkOneCompositeTypeIndex( ir_context, subobject_type_id, index_value); } // The access chain's result type is a pointer to the composite component // that was reached after following all indices. The storage class is that // of the original pointer. uint32_t result_type = fuzzerutil::MaybeGetPointerType( ir_context, subobject_type_id, static_cast(pointer_type->GetSingleWordInOperand(0))); // Add the access chain instruction to the module, and update the module's // id bound. fuzzerutil::UpdateModuleIdBound(ir_context, message_.fresh_id()); FindInstruction(message_.instruction_to_insert_before(), ir_context) ->InsertBefore(MakeUnique( ir_context, SpvOpAccessChain, result_type, message_.fresh_id(), operands)); // Conservatively invalidate all analyses. ir_context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone); // If the base pointer's pointee value was irrelevant, the same is true of // the pointee value of the result of this access chain. if (transformation_context->GetFactManager()->PointeeValueIsIrrelevant( message_.pointer_id())) { transformation_context->GetFactManager()->AddFactValueOfPointeeIsIrrelevant( message_.fresh_id()); } } protobufs::Transformation TransformationAccessChain::ToMessage() const { protobufs::Transformation result; *result.mutable_access_chain() = message_; return result; } std::pair TransformationAccessChain::GetIndexValue( opt::IRContext* ir_context, uint32_t index_id, uint32_t object_type_id) const { if (!ValidIndexToComposite(ir_context, index_id, object_type_id)) { return {false, 0}; } auto index_instruction = ir_context->get_def_use_mgr()->GetDef(index_id); uint32_t bound = fuzzerutil::GetBoundForCompositeIndex( *ir_context->get_def_use_mgr()->GetDef(object_type_id), ir_context); // The index must be a constant if (!spvOpcodeIsConstant(index_instruction->opcode())) { return {false, 0}; } // The index must be in bounds. uint32_t value = index_instruction->GetSingleWordInOperand(0); if (value >= bound) { return {false, 0}; } return {true, value}; } bool TransformationAccessChain::ValidIndexToComposite( opt::IRContext* ir_context, uint32_t index_id, uint32_t object_type_id) { auto object_type_def = ir_context->get_def_use_mgr()->GetDef(object_type_id); // The object being indexed must be a composite. if (!spvOpcodeIsComposite(object_type_def->opcode())) { return false; } // Get the defining instruction of the index. auto index_instruction = ir_context->get_def_use_mgr()->GetDef(index_id); if (!index_instruction) { return false; } // The index type must be 32-bit integer. auto index_type = ir_context->get_def_use_mgr()->GetDef(index_instruction->type_id()); if (index_type->opcode() != SpvOpTypeInt || index_type->GetSingleWordInOperand(0) != 32) { return false; } // If the object being traversed is a struct, the id must correspond to an // in-bound constant. if (object_type_def->opcode() == SpvOpTypeStruct) { if (!spvOpcodeIsConstant(index_instruction->opcode())) { return false; } } return true; } } // namespace fuzz } // namespace spvtools