// Copyright (c) 2018 The Khronos Group Inc. // Copyright (c) 2018 Valve Corporation // Copyright (c) 2018 LunarG Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "instrument_pass.h" #include "source/cfa.h" #include "source/spirv_constant.h" namespace { // Common Parameter Positions static const int kInstCommonParamInstIdx = 0; static const int kInstCommonParamCnt = 1; // Indices of operands in SPIR-V instructions static const int kEntryPointExecutionModelInIdx = 0; static const int kEntryPointFunctionIdInIdx = 1; } // anonymous namespace namespace spvtools { namespace opt { void InstrumentPass::MovePreludeCode( BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, std::unique_ptr* new_blk_ptr) { same_block_pre_.clear(); same_block_post_.clear(); // Initialize new block. Reuse label from original block. new_blk_ptr->reset(new BasicBlock(std::move(ref_block_itr->GetLabel()))); // Move contents of original ref block up to ref instruction. for (auto cii = ref_block_itr->begin(); cii != ref_inst_itr; cii = ref_block_itr->begin()) { Instruction* inst = &*cii; inst->RemoveFromList(); std::unique_ptr mv_ptr(inst); // Remember same-block ops for possible regeneration. if (IsSameBlockOp(&*mv_ptr)) { auto* sb_inst_ptr = mv_ptr.get(); same_block_pre_[mv_ptr->result_id()] = sb_inst_ptr; } (*new_blk_ptr)->AddInstruction(std::move(mv_ptr)); } } void InstrumentPass::MovePostludeCode( UptrVectorIterator ref_block_itr, BasicBlock* new_blk_ptr) { // new_blk_ptr->reset(new BasicBlock(NewLabel(ref_block_itr->id()))); // Move contents of original ref block. for (auto cii = ref_block_itr->begin(); cii != ref_block_itr->end(); cii = ref_block_itr->begin()) { Instruction* inst = &*cii; inst->RemoveFromList(); std::unique_ptr mv_inst(inst); // Regenerate any same-block instruction that has not been seen in the // current block. if (same_block_pre_.size() > 0) { CloneSameBlockOps(&mv_inst, &same_block_post_, &same_block_pre_, new_blk_ptr); // Remember same-block ops in this block. if (IsSameBlockOp(&*mv_inst)) { const uint32_t rid = mv_inst->result_id(); same_block_post_[rid] = rid; } } new_blk_ptr->AddInstruction(std::move(mv_inst)); } } std::unique_ptr InstrumentPass::NewLabel(uint32_t label_id) { std::unique_ptr newLabel( new Instruction(context(), SpvOpLabel, 0, label_id, {})); get_def_use_mgr()->AnalyzeInstDefUse(&*newLabel); return newLabel; } uint32_t InstrumentPass::GenUintCastCode(uint32_t val_id, InstructionBuilder* builder) { // Cast value to 32-bit unsigned if necessary if (get_def_use_mgr()->GetDef(val_id)->type_id() == GetUintId()) return val_id; return builder->AddUnaryOp(GetUintId(), SpvOpBitcast, val_id)->result_id(); } void InstrumentPass::GenDebugOutputFieldCode(uint32_t base_offset_id, uint32_t field_offset, uint32_t field_value_id, InstructionBuilder* builder) { // Cast value to 32-bit unsigned if necessary uint32_t val_id = GenUintCastCode(field_value_id, builder); // Store value Instruction* data_idx_inst = builder->AddBinaryOp(GetUintId(), SpvOpIAdd, base_offset_id, builder->GetUintConstantId(field_offset)); uint32_t buf_id = GetOutputBufferId(); uint32_t buf_uint_ptr_id = GetOutputBufferPtrId(); Instruction* achain_inst = builder->AddTernaryOp(buf_uint_ptr_id, SpvOpAccessChain, buf_id, builder->GetUintConstantId(kDebugOutputDataOffset), data_idx_inst->result_id()); (void)builder->AddBinaryOp(0, SpvOpStore, achain_inst->result_id(), val_id); } void InstrumentPass::GenCommonStreamWriteCode(uint32_t record_sz, uint32_t inst_id, uint32_t stage_idx, uint32_t base_offset_id, InstructionBuilder* builder) { // Store record size GenDebugOutputFieldCode(base_offset_id, kInstCommonOutSize, builder->GetUintConstantId(record_sz), builder); // Store Shader Id GenDebugOutputFieldCode(base_offset_id, kInstCommonOutShaderId, builder->GetUintConstantId(shader_id_), builder); // Store Instruction Idx GenDebugOutputFieldCode(base_offset_id, kInstCommonOutInstructionIdx, inst_id, builder); // Store Stage Idx GenDebugOutputFieldCode(base_offset_id, kInstCommonOutStageIdx, builder->GetUintConstantId(stage_idx), builder); } void InstrumentPass::GenFragCoordEltDebugOutputCode( uint32_t base_offset_id, uint32_t uint_frag_coord_id, uint32_t element, InstructionBuilder* builder) { Instruction* element_val_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, uint_frag_coord_id, element); GenDebugOutputFieldCode(base_offset_id, kInstFragOutFragCoordX + element, element_val_inst->result_id(), builder); } uint32_t InstrumentPass::GenVarLoad(uint32_t var_id, InstructionBuilder* builder) { Instruction* var_inst = get_def_use_mgr()->GetDef(var_id); uint32_t type_id = GetPointeeTypeId(var_inst); Instruction* load_inst = builder->AddUnaryOp(type_id, SpvOpLoad, var_id); return load_inst->result_id(); } void InstrumentPass::GenBuiltinOutputCode(uint32_t builtin_id, uint32_t builtin_off, uint32_t base_offset_id, InstructionBuilder* builder) { // Load and store builtin uint32_t load_id = GenVarLoad(builtin_id, builder); GenDebugOutputFieldCode(base_offset_id, builtin_off, load_id, builder); } void InstrumentPass::GenStageStreamWriteCode(uint32_t stage_idx, uint32_t base_offset_id, InstructionBuilder* builder) { // TODO(greg-lunarg): Add support for all stages switch (stage_idx) { case SpvExecutionModelVertex: { // Load and store VertexId and InstanceId GenBuiltinOutputCode( context()->GetBuiltinInputVarId(SpvBuiltInVertexIndex), kInstVertOutVertexIndex, base_offset_id, builder); GenBuiltinOutputCode( context()->GetBuiltinInputVarId(SpvBuiltInInstanceIndex), kInstVertOutInstanceIndex, base_offset_id, builder); } break; case SpvExecutionModelGLCompute: case SpvExecutionModelTaskNV: case SpvExecutionModelMeshNV: { // Load and store GlobalInvocationId. uint32_t load_id = GenVarLoad( context()->GetBuiltinInputVarId(SpvBuiltInGlobalInvocationId), builder); Instruction* x_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, load_id, 0); Instruction* y_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, load_id, 1); Instruction* z_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, load_id, 2); GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdX, x_inst->result_id(), builder); GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdY, y_inst->result_id(), builder); GenDebugOutputFieldCode(base_offset_id, kInstCompOutGlobalInvocationIdZ, z_inst->result_id(), builder); } break; case SpvExecutionModelGeometry: { // Load and store PrimitiveId and InvocationId. GenBuiltinOutputCode( context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId), kInstGeomOutPrimitiveId, base_offset_id, builder); GenBuiltinOutputCode( context()->GetBuiltinInputVarId(SpvBuiltInInvocationId), kInstGeomOutInvocationId, base_offset_id, builder); } break; case SpvExecutionModelTessellationControl: { // Load and store InvocationId and PrimitiveId GenBuiltinOutputCode( context()->GetBuiltinInputVarId(SpvBuiltInInvocationId), kInstTessCtlOutInvocationId, base_offset_id, builder); GenBuiltinOutputCode( context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId), kInstTessCtlOutPrimitiveId, base_offset_id, builder); } break; case SpvExecutionModelTessellationEvaluation: { // Load and store PrimitiveId and TessCoord.uv GenBuiltinOutputCode( context()->GetBuiltinInputVarId(SpvBuiltInPrimitiveId), kInstTessEvalOutPrimitiveId, base_offset_id, builder); uint32_t load_id = GenVarLoad( context()->GetBuiltinInputVarId(SpvBuiltInTessCoord), builder); Instruction* uvec3_cast_inst = builder->AddUnaryOp(GetVec3UintId(), SpvOpBitcast, load_id); uint32_t uvec3_cast_id = uvec3_cast_inst->result_id(); Instruction* u_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, uvec3_cast_id, 0); Instruction* v_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, uvec3_cast_id, 1); GenDebugOutputFieldCode(base_offset_id, kInstTessEvalOutTessCoordU, u_inst->result_id(), builder); GenDebugOutputFieldCode(base_offset_id, kInstTessEvalOutTessCoordV, v_inst->result_id(), builder); } break; case SpvExecutionModelFragment: { // Load FragCoord and convert to Uint Instruction* frag_coord_inst = builder->AddUnaryOp( GetVec4FloatId(), SpvOpLoad, context()->GetBuiltinInputVarId(SpvBuiltInFragCoord)); Instruction* uint_frag_coord_inst = builder->AddUnaryOp( GetVec4UintId(), SpvOpBitcast, frag_coord_inst->result_id()); for (uint32_t u = 0; u < 2u; ++u) GenFragCoordEltDebugOutputCode( base_offset_id, uint_frag_coord_inst->result_id(), u, builder); } break; case SpvExecutionModelRayGenerationNV: case SpvExecutionModelIntersectionNV: case SpvExecutionModelAnyHitNV: case SpvExecutionModelClosestHitNV: case SpvExecutionModelMissNV: case SpvExecutionModelCallableNV: { // Load and store LaunchIdNV. uint32_t launch_id = GenVarLoad( context()->GetBuiltinInputVarId(SpvBuiltInLaunchIdNV), builder); Instruction* x_launch_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, launch_id, 0); Instruction* y_launch_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, launch_id, 1); Instruction* z_launch_inst = builder->AddIdLiteralOp( GetUintId(), SpvOpCompositeExtract, launch_id, 2); GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdX, x_launch_inst->result_id(), builder); GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdY, y_launch_inst->result_id(), builder); GenDebugOutputFieldCode(base_offset_id, kInstRayTracingOutLaunchIdZ, z_launch_inst->result_id(), builder); } break; default: { assert(false && "unsupported stage"); } break; } } void InstrumentPass::GenDebugStreamWrite( uint32_t instruction_idx, uint32_t stage_idx, const std::vector& validation_ids, InstructionBuilder* builder) { // Call debug output function. Pass func_idx, instruction_idx and // validation ids as args. uint32_t val_id_cnt = static_cast(validation_ids.size()); uint32_t output_func_id = GetStreamWriteFunctionId(stage_idx, val_id_cnt); std::vector args = {output_func_id, builder->GetUintConstantId(instruction_idx)}; (void)args.insert(args.end(), validation_ids.begin(), validation_ids.end()); (void)builder->AddNaryOp(GetVoidId(), SpvOpFunctionCall, args); } uint32_t InstrumentPass::GenDebugDirectRead( const std::vector& offset_ids, InstructionBuilder* builder) { // Call debug input function. Pass func_idx and offset ids as args. uint32_t off_id_cnt = static_cast(offset_ids.size()); uint32_t input_func_id = GetDirectReadFunctionId(off_id_cnt); std::vector args = {input_func_id}; (void)args.insert(args.end(), offset_ids.begin(), offset_ids.end()); return builder->AddNaryOp(GetUintId(), SpvOpFunctionCall, args)->result_id(); } bool InstrumentPass::IsSameBlockOp(const Instruction* inst) const { return inst->opcode() == SpvOpSampledImage || inst->opcode() == SpvOpImage; } void InstrumentPass::CloneSameBlockOps( std::unique_ptr* inst, std::unordered_map* same_blk_post, std::unordered_map* same_blk_pre, BasicBlock* block_ptr) { bool changed = false; (*inst)->ForEachInId([&same_blk_post, &same_blk_pre, &block_ptr, &changed, this](uint32_t* iid) { const auto map_itr = (*same_blk_post).find(*iid); if (map_itr == (*same_blk_post).end()) { const auto map_itr2 = (*same_blk_pre).find(*iid); if (map_itr2 != (*same_blk_pre).end()) { // Clone pre-call same-block ops, map result id. const Instruction* in_inst = map_itr2->second; std::unique_ptr sb_inst(in_inst->Clone(context())); const uint32_t rid = sb_inst->result_id(); const uint32_t nid = this->TakeNextId(); get_decoration_mgr()->CloneDecorations(rid, nid); sb_inst->SetResultId(nid); get_def_use_mgr()->AnalyzeInstDefUse(&*sb_inst); (*same_blk_post)[rid] = nid; *iid = nid; changed = true; CloneSameBlockOps(&sb_inst, same_blk_post, same_blk_pre, block_ptr); block_ptr->AddInstruction(std::move(sb_inst)); } } else { // Reset same-block op operand if necessary if (*iid != map_itr->second) { *iid = map_itr->second; changed = true; } } }); if (changed) get_def_use_mgr()->AnalyzeInstUse(&**inst); } void InstrumentPass::UpdateSucceedingPhis( std::vector>& new_blocks) { const auto first_blk = new_blocks.begin(); const auto last_blk = new_blocks.end() - 1; const uint32_t first_id = (*first_blk)->id(); const uint32_t last_id = (*last_blk)->id(); const BasicBlock& const_last_block = *last_blk->get(); const_last_block.ForEachSuccessorLabel( [&first_id, &last_id, this](const uint32_t succ) { BasicBlock* sbp = this->id2block_[succ]; sbp->ForEachPhiInst([&first_id, &last_id, this](Instruction* phi) { bool changed = false; phi->ForEachInId([&first_id, &last_id, &changed](uint32_t* id) { if (*id == first_id) { *id = last_id; changed = true; } }); if (changed) get_def_use_mgr()->AnalyzeInstUse(phi); }); }); } uint32_t InstrumentPass::GetOutputBufferPtrId() { if (output_buffer_ptr_id_ == 0) { output_buffer_ptr_id_ = context()->get_type_mgr()->FindPointerToType( GetUintId(), SpvStorageClassStorageBuffer); } return output_buffer_ptr_id_; } uint32_t InstrumentPass::GetInputBufferTypeId() { return (validation_id_ == kInstValidationIdBuffAddr) ? GetUint64Id() : GetUintId(); } uint32_t InstrumentPass::GetInputBufferPtrId() { if (input_buffer_ptr_id_ == 0) { input_buffer_ptr_id_ = context()->get_type_mgr()->FindPointerToType( GetInputBufferTypeId(), SpvStorageClassStorageBuffer); } return input_buffer_ptr_id_; } uint32_t InstrumentPass::GetOutputBufferBinding() { switch (validation_id_) { case kInstValidationIdBindless: return kDebugOutputBindingStream; case kInstValidationIdBuffAddr: return kDebugOutputBindingStream; case kInstValidationIdDebugPrintf: return kDebugOutputPrintfStream; default: assert(false && "unexpected validation id"); } return 0; } uint32_t InstrumentPass::GetInputBufferBinding() { switch (validation_id_) { case kInstValidationIdBindless: return kDebugInputBindingBindless; case kInstValidationIdBuffAddr: return kDebugInputBindingBuffAddr; default: assert(false && "unexpected validation id"); } return 0; } analysis::Type* InstrumentPass::GetUintXRuntimeArrayType( uint32_t width, analysis::Type** rarr_ty) { if (*rarr_ty == nullptr) { analysis::DecorationManager* deco_mgr = get_decoration_mgr(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Integer uint_ty(width, false); analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty); analysis::RuntimeArray uint_rarr_ty_tmp(reg_uint_ty); *rarr_ty = type_mgr->GetRegisteredType(&uint_rarr_ty_tmp); uint32_t uint_arr_ty_id = type_mgr->GetTypeInstruction(*rarr_ty); // By the Vulkan spec, a pre-existing RuntimeArray of uint must be part of // a block, and will therefore be decorated with an ArrayStride. Therefore // the undecorated type returned here will not be pre-existing and can // safely be decorated. Since this type is now decorated, it is out of // sync with the TypeManager and therefore the TypeManager must be // invalidated after this pass. assert(context()->get_def_use_mgr()->NumUses(uint_arr_ty_id) == 0 && "used RuntimeArray type returned"); deco_mgr->AddDecorationVal(uint_arr_ty_id, SpvDecorationArrayStride, width / 8u); } return *rarr_ty; } analysis::Type* InstrumentPass::GetUintRuntimeArrayType(uint32_t width) { analysis::Type** rarr_ty = (width == 64) ? &uint64_rarr_ty_ : &uint32_rarr_ty_; return GetUintXRuntimeArrayType(width, rarr_ty); } void InstrumentPass::AddStorageBufferExt() { if (storage_buffer_ext_defined_) return; if (!get_feature_mgr()->HasExtension(kSPV_KHR_storage_buffer_storage_class)) { context()->AddExtension("SPV_KHR_storage_buffer_storage_class"); } storage_buffer_ext_defined_ = true; } // Return id for output buffer uint32_t InstrumentPass::GetOutputBufferId() { if (output_buffer_id_ == 0) { // If not created yet, create one analysis::DecorationManager* deco_mgr = get_decoration_mgr(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Type* reg_uint_rarr_ty = GetUintRuntimeArrayType(32); analysis::Integer uint_ty(32, false); analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty); analysis::Struct buf_ty({reg_uint_ty, reg_uint_rarr_ty}); analysis::Type* reg_buf_ty = type_mgr->GetRegisteredType(&buf_ty); uint32_t obufTyId = type_mgr->GetTypeInstruction(reg_buf_ty); // By the Vulkan spec, a pre-existing struct containing a RuntimeArray // must be a block, and will therefore be decorated with Block. Therefore // the undecorated type returned here will not be pre-existing and can // safely be decorated. Since this type is now decorated, it is out of // sync with the TypeManager and therefore the TypeManager must be // invalidated after this pass. assert(context()->get_def_use_mgr()->NumUses(obufTyId) == 0 && "used struct type returned"); deco_mgr->AddDecoration(obufTyId, SpvDecorationBlock); deco_mgr->AddMemberDecoration(obufTyId, kDebugOutputSizeOffset, SpvDecorationOffset, 0); deco_mgr->AddMemberDecoration(obufTyId, kDebugOutputDataOffset, SpvDecorationOffset, 4); uint32_t obufTyPtrId_ = type_mgr->FindPointerToType(obufTyId, SpvStorageClassStorageBuffer); output_buffer_id_ = TakeNextId(); std::unique_ptr newVarOp(new Instruction( context(), SpvOpVariable, obufTyPtrId_, output_buffer_id_, {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, {SpvStorageClassStorageBuffer}}})); context()->AddGlobalValue(std::move(newVarOp)); deco_mgr->AddDecorationVal(output_buffer_id_, SpvDecorationDescriptorSet, desc_set_); deco_mgr->AddDecorationVal(output_buffer_id_, SpvDecorationBinding, GetOutputBufferBinding()); AddStorageBufferExt(); if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) { // Add the new buffer to all entry points. for (auto& entry : get_module()->entry_points()) { entry.AddOperand({SPV_OPERAND_TYPE_ID, {output_buffer_id_}}); context()->AnalyzeUses(&entry); } } } return output_buffer_id_; } uint32_t InstrumentPass::GetInputBufferId() { if (input_buffer_id_ == 0) { // If not created yet, create one analysis::DecorationManager* deco_mgr = get_decoration_mgr(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); uint32_t width = (validation_id_ == kInstValidationIdBuffAddr) ? 64u : 32u; analysis::Type* reg_uint_rarr_ty = GetUintRuntimeArrayType(width); analysis::Struct buf_ty({reg_uint_rarr_ty}); analysis::Type* reg_buf_ty = type_mgr->GetRegisteredType(&buf_ty); uint32_t ibufTyId = type_mgr->GetTypeInstruction(reg_buf_ty); // By the Vulkan spec, a pre-existing struct containing a RuntimeArray // must be a block, and will therefore be decorated with Block. Therefore // the undecorated type returned here will not be pre-existing and can // safely be decorated. Since this type is now decorated, it is out of // sync with the TypeManager and therefore the TypeManager must be // invalidated after this pass. assert(context()->get_def_use_mgr()->NumUses(ibufTyId) == 0 && "used struct type returned"); deco_mgr->AddDecoration(ibufTyId, SpvDecorationBlock); deco_mgr->AddMemberDecoration(ibufTyId, 0, SpvDecorationOffset, 0); uint32_t ibufTyPtrId_ = type_mgr->FindPointerToType(ibufTyId, SpvStorageClassStorageBuffer); input_buffer_id_ = TakeNextId(); std::unique_ptr newVarOp(new Instruction( context(), SpvOpVariable, ibufTyPtrId_, input_buffer_id_, {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, {SpvStorageClassStorageBuffer}}})); context()->AddGlobalValue(std::move(newVarOp)); deco_mgr->AddDecorationVal(input_buffer_id_, SpvDecorationDescriptorSet, desc_set_); deco_mgr->AddDecorationVal(input_buffer_id_, SpvDecorationBinding, GetInputBufferBinding()); AddStorageBufferExt(); if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) { // Add the new buffer to all entry points. for (auto& entry : get_module()->entry_points()) { entry.AddOperand({SPV_OPERAND_TYPE_ID, {input_buffer_id_}}); context()->AnalyzeUses(&entry); } } } return input_buffer_id_; } uint32_t InstrumentPass::GetFloatId() { if (float_id_ == 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Float float_ty(32); analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty); float_id_ = type_mgr->GetTypeInstruction(reg_float_ty); } return float_id_; } uint32_t InstrumentPass::GetVec4FloatId() { if (v4float_id_ == 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Float float_ty(32); analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty); analysis::Vector v4float_ty(reg_float_ty, 4); analysis::Type* reg_v4float_ty = type_mgr->GetRegisteredType(&v4float_ty); v4float_id_ = type_mgr->GetTypeInstruction(reg_v4float_ty); } return v4float_id_; } uint32_t InstrumentPass::GetUintId() { if (uint_id_ == 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Integer uint_ty(32, false); analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty); uint_id_ = type_mgr->GetTypeInstruction(reg_uint_ty); } return uint_id_; } uint32_t InstrumentPass::GetUint64Id() { if (uint64_id_ == 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Integer uint64_ty(64, false); analysis::Type* reg_uint64_ty = type_mgr->GetRegisteredType(&uint64_ty); uint64_id_ = type_mgr->GetTypeInstruction(reg_uint64_ty); } return uint64_id_; } uint32_t InstrumentPass::GetUint8Id() { if (uint8_id_ == 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Integer uint8_ty(8, false); analysis::Type* reg_uint8_ty = type_mgr->GetRegisteredType(&uint8_ty); uint8_id_ = type_mgr->GetTypeInstruction(reg_uint8_ty); } return uint8_id_; } uint32_t InstrumentPass::GetVecUintId(uint32_t len) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Integer uint_ty(32, false); analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty); analysis::Vector v_uint_ty(reg_uint_ty, len); analysis::Type* reg_v_uint_ty = type_mgr->GetRegisteredType(&v_uint_ty); uint32_t v_uint_id = type_mgr->GetTypeInstruction(reg_v_uint_ty); return v_uint_id; } uint32_t InstrumentPass::GetVec4UintId() { if (v4uint_id_ == 0) v4uint_id_ = GetVecUintId(4u); return v4uint_id_; } uint32_t InstrumentPass::GetVec3UintId() { if (v3uint_id_ == 0) v3uint_id_ = GetVecUintId(3u); return v3uint_id_; } uint32_t InstrumentPass::GetBoolId() { if (bool_id_ == 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Bool bool_ty; analysis::Type* reg_bool_ty = type_mgr->GetRegisteredType(&bool_ty); bool_id_ = type_mgr->GetTypeInstruction(reg_bool_ty); } return bool_id_; } uint32_t InstrumentPass::GetVoidId() { if (void_id_ == 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Void void_ty; analysis::Type* reg_void_ty = type_mgr->GetRegisteredType(&void_ty); void_id_ = type_mgr->GetTypeInstruction(reg_void_ty); } return void_id_; } uint32_t InstrumentPass::GetStreamWriteFunctionId(uint32_t stage_idx, uint32_t val_spec_param_cnt) { // Total param count is common params plus validation-specific // params uint32_t param_cnt = kInstCommonParamCnt + val_spec_param_cnt; if (param2output_func_id_[param_cnt] == 0) { // Create function param2output_func_id_[param_cnt] = TakeNextId(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); std::vector param_types; for (uint32_t c = 0; c < param_cnt; ++c) param_types.push_back(type_mgr->GetType(GetUintId())); analysis::Function func_ty(type_mgr->GetType(GetVoidId()), param_types); analysis::Type* reg_func_ty = type_mgr->GetRegisteredType(&func_ty); std::unique_ptr func_inst( new Instruction(get_module()->context(), SpvOpFunction, GetVoidId(), param2output_func_id_[param_cnt], {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, {SpvFunctionControlMaskNone}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_mgr->GetTypeInstruction(reg_func_ty)}}})); get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst); std::unique_ptr output_func = MakeUnique(std::move(func_inst)); // Add parameters std::vector param_vec; for (uint32_t c = 0; c < param_cnt; ++c) { uint32_t pid = TakeNextId(); param_vec.push_back(pid); std::unique_ptr param_inst( new Instruction(get_module()->context(), SpvOpFunctionParameter, GetUintId(), pid, {})); get_def_use_mgr()->AnalyzeInstDefUse(&*param_inst); output_func->AddParameter(std::move(param_inst)); } // Create first block uint32_t test_blk_id = TakeNextId(); std::unique_ptr test_label(NewLabel(test_blk_id)); std::unique_ptr new_blk_ptr = MakeUnique(std::move(test_label)); InstructionBuilder builder( context(), &*new_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); // Gen test if debug output buffer size will not be exceeded. uint32_t val_spec_offset = kInstStageOutCnt; uint32_t obuf_record_sz = val_spec_offset + val_spec_param_cnt; uint32_t buf_id = GetOutputBufferId(); uint32_t buf_uint_ptr_id = GetOutputBufferPtrId(); Instruction* obuf_curr_sz_ac_inst = builder.AddBinaryOp(buf_uint_ptr_id, SpvOpAccessChain, buf_id, builder.GetUintConstantId(kDebugOutputSizeOffset)); // Fetch the current debug buffer written size atomically, adding the // size of the record to be written. uint32_t obuf_record_sz_id = builder.GetUintConstantId(obuf_record_sz); uint32_t mask_none_id = builder.GetUintConstantId(SpvMemoryAccessMaskNone); uint32_t scope_invok_id = builder.GetUintConstantId(SpvScopeInvocation); Instruction* obuf_curr_sz_inst = builder.AddQuadOp( GetUintId(), SpvOpAtomicIAdd, obuf_curr_sz_ac_inst->result_id(), scope_invok_id, mask_none_id, obuf_record_sz_id); uint32_t obuf_curr_sz_id = obuf_curr_sz_inst->result_id(); // Compute new written size Instruction* obuf_new_sz_inst = builder.AddBinaryOp(GetUintId(), SpvOpIAdd, obuf_curr_sz_id, builder.GetUintConstantId(obuf_record_sz)); // Fetch the data bound Instruction* obuf_bnd_inst = builder.AddIdLiteralOp(GetUintId(), SpvOpArrayLength, GetOutputBufferId(), kDebugOutputDataOffset); // Test that new written size is less than or equal to debug output // data bound Instruction* obuf_safe_inst = builder.AddBinaryOp( GetBoolId(), SpvOpULessThanEqual, obuf_new_sz_inst->result_id(), obuf_bnd_inst->result_id()); uint32_t merge_blk_id = TakeNextId(); uint32_t write_blk_id = TakeNextId(); std::unique_ptr merge_label(NewLabel(merge_blk_id)); std::unique_ptr write_label(NewLabel(write_blk_id)); (void)builder.AddConditionalBranch(obuf_safe_inst->result_id(), write_blk_id, merge_blk_id, merge_blk_id, SpvSelectionControlMaskNone); // Close safety test block and gen write block new_blk_ptr->SetParent(&*output_func); output_func->AddBasicBlock(std::move(new_blk_ptr)); new_blk_ptr = MakeUnique(std::move(write_label)); builder.SetInsertPoint(&*new_blk_ptr); // Generate common and stage-specific debug record members GenCommonStreamWriteCode(obuf_record_sz, param_vec[kInstCommonParamInstIdx], stage_idx, obuf_curr_sz_id, &builder); GenStageStreamWriteCode(stage_idx, obuf_curr_sz_id, &builder); // Gen writes of validation specific data for (uint32_t i = 0; i < val_spec_param_cnt; ++i) { GenDebugOutputFieldCode(obuf_curr_sz_id, val_spec_offset + i, param_vec[kInstCommonParamCnt + i], &builder); } // Close write block and gen merge block (void)builder.AddBranch(merge_blk_id); new_blk_ptr->SetParent(&*output_func); output_func->AddBasicBlock(std::move(new_blk_ptr)); new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); // Close merge block and function and add function to module (void)builder.AddNullaryOp(0, SpvOpReturn); new_blk_ptr->SetParent(&*output_func); output_func->AddBasicBlock(std::move(new_blk_ptr)); std::unique_ptr func_end_inst( new Instruction(get_module()->context(), SpvOpFunctionEnd, 0, 0, {})); get_def_use_mgr()->AnalyzeInstDefUse(&*func_end_inst); output_func->SetFunctionEnd(std::move(func_end_inst)); context()->AddFunction(std::move(output_func)); } return param2output_func_id_[param_cnt]; } uint32_t InstrumentPass::GetDirectReadFunctionId(uint32_t param_cnt) { uint32_t func_id = param2input_func_id_[param_cnt]; if (func_id != 0) return func_id; // Create input function for param_cnt. func_id = TakeNextId(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); std::vector param_types; for (uint32_t c = 0; c < param_cnt; ++c) param_types.push_back(type_mgr->GetType(GetUintId())); uint32_t ibuf_type_id = GetInputBufferTypeId(); analysis::Function func_ty(type_mgr->GetType(ibuf_type_id), param_types); analysis::Type* reg_func_ty = type_mgr->GetRegisteredType(&func_ty); std::unique_ptr func_inst(new Instruction( get_module()->context(), SpvOpFunction, ibuf_type_id, func_id, {{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, {SpvFunctionControlMaskNone}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_mgr->GetTypeInstruction(reg_func_ty)}}})); get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst); std::unique_ptr input_func = MakeUnique(std::move(func_inst)); // Add parameters std::vector param_vec; for (uint32_t c = 0; c < param_cnt; ++c) { uint32_t pid = TakeNextId(); param_vec.push_back(pid); std::unique_ptr param_inst(new Instruction( get_module()->context(), SpvOpFunctionParameter, GetUintId(), pid, {})); get_def_use_mgr()->AnalyzeInstDefUse(&*param_inst); input_func->AddParameter(std::move(param_inst)); } // Create block uint32_t blk_id = TakeNextId(); std::unique_ptr blk_label(NewLabel(blk_id)); std::unique_ptr new_blk_ptr = MakeUnique(std::move(blk_label)); InstructionBuilder builder( context(), &*new_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); // For each offset parameter, generate new offset with parameter, adding last // loaded value if it exists, and load value from input buffer at new offset. // Return last loaded value. uint32_t buf_id = GetInputBufferId(); uint32_t buf_ptr_id = GetInputBufferPtrId(); uint32_t last_value_id = 0; for (uint32_t p = 0; p < param_cnt; ++p) { uint32_t offset_id; if (p == 0) { offset_id = param_vec[0]; } else { if (ibuf_type_id != GetUintId()) { Instruction* ucvt_inst = builder.AddUnaryOp(GetUintId(), SpvOpUConvert, last_value_id); last_value_id = ucvt_inst->result_id(); } Instruction* offset_inst = builder.AddBinaryOp( GetUintId(), SpvOpIAdd, last_value_id, param_vec[p]); offset_id = offset_inst->result_id(); } Instruction* ac_inst = builder.AddTernaryOp( buf_ptr_id, SpvOpAccessChain, buf_id, builder.GetUintConstantId(kDebugInputDataOffset), offset_id); Instruction* load_inst = builder.AddUnaryOp(ibuf_type_id, SpvOpLoad, ac_inst->result_id()); last_value_id = load_inst->result_id(); } (void)builder.AddInstruction(MakeUnique( context(), SpvOpReturnValue, 0, 0, std::initializer_list{{SPV_OPERAND_TYPE_ID, {last_value_id}}})); // Close block and function and add function to module new_blk_ptr->SetParent(&*input_func); input_func->AddBasicBlock(std::move(new_blk_ptr)); std::unique_ptr func_end_inst( new Instruction(get_module()->context(), SpvOpFunctionEnd, 0, 0, {})); get_def_use_mgr()->AnalyzeInstDefUse(&*func_end_inst); input_func->SetFunctionEnd(std::move(func_end_inst)); context()->AddFunction(std::move(input_func)); param2input_func_id_[param_cnt] = func_id; return func_id; } bool InstrumentPass::InstrumentFunction(Function* func, uint32_t stage_idx, InstProcessFunction& pfn) { bool modified = false; // Compute function index uint32_t function_idx = 0; for (auto fii = get_module()->begin(); fii != get_module()->end(); ++fii) { if (&*fii == func) break; ++function_idx; } std::vector> new_blks; // Using block iterators here because of block erasures and insertions. for (auto bi = func->begin(); bi != func->end(); ++bi) { for (auto ii = bi->begin(); ii != bi->end();) { // Generate instrumentation if warranted pfn(ii, bi, stage_idx, &new_blks); if (new_blks.size() == 0) { ++ii; continue; } // Add new blocks to label id map for (auto& blk : new_blks) id2block_[blk->id()] = &*blk; // If there are new blocks we know there will always be two or // more, so update succeeding phis with label of new last block. size_t newBlocksSize = new_blks.size(); assert(newBlocksSize > 1); UpdateSucceedingPhis(new_blks); // Replace original block with new block(s) bi = bi.Erase(); for (auto& bb : new_blks) { bb->SetParent(func); } bi = bi.InsertBefore(&new_blks); // Reset block iterator to last new block for (size_t i = 0; i < newBlocksSize - 1; i++) ++bi; modified = true; // Restart instrumenting at beginning of last new block, // but skip over any new phi or copy instruction. ii = bi->begin(); if (ii->opcode() == SpvOpPhi || ii->opcode() == SpvOpCopyObject) ++ii; new_blks.clear(); } } return modified; } bool InstrumentPass::InstProcessCallTreeFromRoots(InstProcessFunction& pfn, std::queue* roots, uint32_t stage_idx) { bool modified = false; std::unordered_set done; // Don't process input and output functions for (auto& ifn : param2input_func_id_) done.insert(ifn.second); for (auto& ofn : param2output_func_id_) done.insert(ofn.second); // Process all functions from roots while (!roots->empty()) { const uint32_t fi = roots->front(); roots->pop(); if (done.insert(fi).second) { Function* fn = id2function_.at(fi); // Add calls first so we don't add new output function context()->AddCalls(fn, roots); modified = InstrumentFunction(fn, stage_idx, pfn) || modified; } } return modified; } bool InstrumentPass::InstProcessEntryPointCallTree(InstProcessFunction& pfn) { // Make sure all entry points have the same execution model. Do not // instrument if they do not. // TODO(greg-lunarg): Handle mixed stages. Technically, a shader module // can contain entry points with different execution models, although // such modules will likely be rare as GLSL and HLSL are geared toward // one model per module. In such cases we will need // to clone any functions which are in the call trees of entrypoints // with differing execution models. uint32_t ecnt = 0; uint32_t stage = SpvExecutionModelMax; for (auto& e : get_module()->entry_points()) { if (ecnt == 0) stage = e.GetSingleWordInOperand(kEntryPointExecutionModelInIdx); else if (e.GetSingleWordInOperand(kEntryPointExecutionModelInIdx) != stage) { if (consumer()) { std::string message = "Mixed stage shader module not supported"; consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str()); } return false; } ++ecnt; } // Check for supported stages if (stage != SpvExecutionModelVertex && stage != SpvExecutionModelFragment && stage != SpvExecutionModelGeometry && stage != SpvExecutionModelGLCompute && stage != SpvExecutionModelTessellationControl && stage != SpvExecutionModelTessellationEvaluation && stage != SpvExecutionModelTaskNV && stage != SpvExecutionModelMeshNV && stage != SpvExecutionModelRayGenerationNV && stage != SpvExecutionModelIntersectionNV && stage != SpvExecutionModelAnyHitNV && stage != SpvExecutionModelClosestHitNV && stage != SpvExecutionModelMissNV && stage != SpvExecutionModelCallableNV) { if (consumer()) { std::string message = "Stage not supported by instrumentation"; consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str()); } return false; } // Add together the roots of all entry points std::queue roots; for (auto& e : get_module()->entry_points()) { roots.push(e.GetSingleWordInOperand(kEntryPointFunctionIdInIdx)); } bool modified = InstProcessCallTreeFromRoots(pfn, &roots, stage); return modified; } void InstrumentPass::InitializeInstrument() { output_buffer_id_ = 0; output_buffer_ptr_id_ = 0; input_buffer_ptr_id_ = 0; input_buffer_id_ = 0; float_id_ = 0; v4float_id_ = 0; uint_id_ = 0; uint64_id_ = 0; uint8_id_ = 0; v4uint_id_ = 0; v3uint_id_ = 0; bool_id_ = 0; void_id_ = 0; storage_buffer_ext_defined_ = false; uint32_rarr_ty_ = nullptr; uint64_rarr_ty_ = nullptr; // clear collections id2function_.clear(); id2block_.clear(); // clear maps param2input_func_id_.clear(); param2output_func_id_.clear(); // Initialize function and block maps. for (auto& fn : *get_module()) { id2function_[fn.result_id()] = &fn; for (auto& blk : fn) { id2block_[blk.id()] = &blk; } } // Remember original instruction offsets uint32_t module_offset = 0; Module* module = get_module(); for (auto& i : context()->capabilities()) { (void)i; ++module_offset; } for (auto& i : module->extensions()) { (void)i; ++module_offset; } for (auto& i : module->ext_inst_imports()) { (void)i; ++module_offset; } ++module_offset; // memory_model for (auto& i : module->entry_points()) { (void)i; ++module_offset; } for (auto& i : module->execution_modes()) { (void)i; ++module_offset; } for (auto& i : module->debugs1()) { (void)i; ++module_offset; } for (auto& i : module->debugs2()) { (void)i; ++module_offset; } for (auto& i : module->debugs3()) { (void)i; ++module_offset; } for (auto& i : module->ext_inst_debuginfo()) { (void)i; ++module_offset; } for (auto& i : module->annotations()) { (void)i; ++module_offset; } for (auto& i : module->types_values()) { module_offset += 1; module_offset += static_cast(i.dbg_line_insts().size()); } auto curr_fn = get_module()->begin(); for (; curr_fn != get_module()->end(); ++curr_fn) { // Count function instruction module_offset += 1; curr_fn->ForEachParam( [&module_offset](const Instruction*) { module_offset += 1; }, true); for (auto& blk : *curr_fn) { // Count label module_offset += 1; for (auto& inst : blk) { module_offset += static_cast(inst.dbg_line_insts().size()); uid2offset_[inst.unique_id()] = module_offset; module_offset += 1; } } // Count function end instruction module_offset += 1; } } } // namespace opt } // namespace spvtools