// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "cfg.h" #include "cfa.h" #include "ir_builder.h" #include "ir_context.h" #include "module.h" namespace spvtools { namespace ir { namespace { // Universal Limit of ResultID + 1 const int kInvalidId = 0x400000; } // namespace CFG::CFG(ir::Module* module) : module_(module), pseudo_entry_block_(std::unique_ptr( new ir::Instruction(module->context(), SpvOpLabel, 0, 0, {}))), pseudo_exit_block_(std::unique_ptr(new ir::Instruction( module->context(), SpvOpLabel, 0, kInvalidId, {}))) { for (auto& fn : *module) { for (auto& blk : fn) { RegisterBlock(&blk); } } } void CFG::AddEdges(ir::BasicBlock* blk) { uint32_t blk_id = blk->id(); // Force the creation of an entry, not all basic block have predecessors // (such as the entry blocks and some unreachables). label2preds_[blk_id]; const auto* const_blk = blk; const_blk->ForEachSuccessorLabel( [blk_id, this](const uint32_t succ_id) { AddEdge(blk_id, succ_id); }); } void CFG::RemoveNonExistingEdges(uint32_t blk_id) { std::vector updated_pred_list; for (uint32_t id : preds(blk_id)) { const ir::BasicBlock* pred_blk = block(id); bool has_branch = false; pred_blk->ForEachSuccessorLabel([&has_branch, blk_id](uint32_t succ) { if (succ == blk_id) { has_branch = true; } }); if (has_branch) updated_pred_list.push_back(id); } label2preds_.at(blk_id) = std::move(updated_pred_list); } void CFG::ComputeStructuredOrder(ir::Function* func, ir::BasicBlock* root, std::list* order) { assert(module_->context()->get_feature_mgr()->HasCapability( SpvCapabilityShader) && "This only works on structured control flow"); // Compute structured successors and do DFS. ComputeStructuredSuccessors(func); auto ignore_block = [](cbb_ptr) {}; auto ignore_edge = [](cbb_ptr, cbb_ptr) {}; auto get_structured_successors = [this](const ir::BasicBlock* b) { return &(block2structured_succs_[b]); }; // TODO(greg-lunarg): Get rid of const_cast by making moving const // out of the cfa.h prototypes and into the invoking code. auto post_order = [&](cbb_ptr b) { order->push_front(const_cast(b)); }; spvtools::CFA::DepthFirstTraversal( root, get_structured_successors, ignore_block, post_order, ignore_edge); } void CFG::ForEachBlockInReversePostOrder( BasicBlock* bb, const std::function& f) { std::vector po; std::unordered_set seen; ComputePostOrderTraversal(bb, &po, &seen); for (auto current_bb = po.rbegin(); current_bb != po.rend(); ++current_bb) { if (!IsPseudoExitBlock(*current_bb) && !IsPseudoEntryBlock(*current_bb)) { f(*current_bb); } } } void CFG::ComputeStructuredSuccessors(ir::Function* func) { block2structured_succs_.clear(); for (auto& blk : *func) { // If no predecessors in function, make successor to pseudo entry. if (label2preds_[blk.id()].size() == 0) block2structured_succs_[&pseudo_entry_block_].push_back(&blk); // If header, make merge block first successor and continue block second // successor if there is one. uint32_t mbid = blk.MergeBlockIdIfAny(); if (mbid != 0) { block2structured_succs_[&blk].push_back(block(mbid)); uint32_t cbid = blk.ContinueBlockIdIfAny(); if (cbid != 0) { block2structured_succs_[&blk].push_back(block(cbid)); } } // Add true successors. const auto& const_blk = blk; const_blk.ForEachSuccessorLabel([&blk, this](const uint32_t sbid) { block2structured_succs_[&blk].push_back(block(sbid)); }); } } void CFG::ComputePostOrderTraversal(BasicBlock* bb, vector* order, unordered_set* seen) { seen->insert(bb); static_cast(bb)->ForEachSuccessorLabel( [&order, &seen, this](const uint32_t sbid) { BasicBlock* succ_bb = id2block_[sbid]; if (!seen->count(succ_bb)) { ComputePostOrderTraversal(succ_bb, order, seen); } }); order->push_back(bb); } BasicBlock* CFG::SplitLoopHeader(ir::BasicBlock* bb) { assert(bb->GetLoopMergeInst() && "Expecting bb to be the header of a loop."); Function* fn = bb->GetParent(); IRContext* context = fn->context(); // Find the insertion point for the new bb. Function::iterator header_it = std::find_if( fn->begin(), fn->end(), [bb](BasicBlock& block_in_func) { return &block_in_func == bb; }); assert(header_it != fn->end()); const std::vector& pred = preds(bb->id()); // Find the back edge ir::BasicBlock* latch_block = nullptr; Function::iterator latch_block_iter = header_it; while (++latch_block_iter != fn->end()) { // If blocks are in the proper order, then the only branch that appears // after the header is the latch. if (std::find(pred.begin(), pred.end(), latch_block_iter->id()) != pred.end()) { break; } } assert(latch_block_iter != fn->end() && "Could not find the latch."); latch_block = &*latch_block_iter; RemoveSuccessorEdges(bb); // Create the new header bb basic bb. // Leave the phi instructions behind. auto iter = bb->begin(); while (iter->opcode() == SpvOpPhi) { ++iter; } std::unique_ptr newBlock( bb->SplitBasicBlock(context, context->TakeNextId(), iter)); // Insert the new bb in the correct position auto insert_pos = header_it; ++insert_pos; ir::BasicBlock* new_header = &*insert_pos.InsertBefore(std::move(newBlock)); new_header->SetParent(fn); uint32_t new_header_id = new_header->id(); context->AnalyzeDefUse(new_header->GetLabelInst()); // Update cfg RegisterBlock(new_header); // Update bb mappings. context->set_instr_block(new_header->GetLabelInst(), new_header); new_header->ForEachInst([new_header, context](ir::Instruction* inst) { context->set_instr_block(inst, new_header); }); // Adjust the OpPhi instructions as needed. bb->ForEachPhiInst([latch_block, bb, new_header, context](Instruction* phi) { std::vector preheader_phi_ops; std::vector header_phi_ops; // Identify where the original inputs to original OpPhi belong: header or // preheader. for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) { uint32_t def_id = phi->GetSingleWordInOperand(i); uint32_t branch_id = phi->GetSingleWordInOperand(i + 1); if (branch_id == latch_block->id()) { header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {def_id}}); header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {branch_id}}); } else { preheader_phi_ops.push_back(def_id); preheader_phi_ops.push_back(branch_id); } } // Create a phi instruction if and only if the preheader_phi_ops has more // than one pair. if (preheader_phi_ops.size() > 2) { opt::InstructionBuilder builder( context, &*bb->begin(), ir::IRContext::kAnalysisDefUse | ir::IRContext::kAnalysisInstrToBlockMapping); ir::Instruction* new_phi = builder.AddPhi(phi->type_id(), preheader_phi_ops); // Add the OpPhi to the header bb. header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {new_phi->result_id()}}); header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}}); } else { // An OpPhi with a single entry is just a copy. In this case use the same // instruction in the new header. header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {preheader_phi_ops[0]}}); header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}}); } phi->RemoveFromList(); std::unique_ptr phi_owner(phi); phi->SetInOperands(std::move(header_phi_ops)); new_header->begin()->InsertBefore(std::move(phi_owner)); context->set_instr_block(phi, new_header); context->AnalyzeUses(phi); }); // Add a branch to the new header. opt::InstructionBuilder branch_builder( context, bb, ir::IRContext::kAnalysisDefUse | ir::IRContext::kAnalysisInstrToBlockMapping); bb->AddInstruction(MakeUnique( context, SpvOpBranch, 0, 0, std::initializer_list{ {SPV_OPERAND_TYPE_ID, {new_header->id()}}})); context->AnalyzeUses(bb->terminator()); context->set_instr_block(bb->terminator(), bb); label2preds_[new_header->id()].push_back(bb->id()); // Update the latch to branch to the new header. latch_block->ForEachSuccessorLabel([bb, new_header_id](uint32_t* id) { if (*id == bb->id()) { *id = new_header_id; } }); ir::Instruction* latch_branch = latch_block->terminator(); context->AnalyzeUses(latch_branch); label2preds_[new_header->id()].push_back(latch_block->id()); auto& block_preds = label2preds_[bb->id()]; auto latch_pos = std::find(block_preds.begin(), block_preds.end(), latch_block->id()); assert(latch_pos != block_preds.end() && "The cfg was invalid."); block_preds.erase(latch_pos); // Update the loop descriptors if (context->AreAnalysesValid(ir::IRContext::kAnalysisLoopAnalysis)) { LoopDescriptor* loop_desc = context->GetLoopDescriptor(bb->GetParent()); Loop* loop = (*loop_desc)[bb->id()]; loop->AddBasicBlock(new_header_id); loop->SetHeaderBlock(new_header); loop_desc->SetBasicBlockToLoop(new_header_id, loop); loop->RemoveBasicBlock(bb->id()); loop->SetPreHeaderBlock(bb); Loop* parent_loop = loop->GetParent(); if (parent_loop != nullptr) { parent_loop->AddBasicBlock(bb->id()); loop_desc->SetBasicBlockToLoop(bb->id(), parent_loop); } else { loop_desc->SetBasicBlockToLoop(bb->id(), nullptr); } } return new_header; } unordered_set CFG::FindReachableBlocks(BasicBlock* start) { std::unordered_set reachable_blocks; ForEachBlockInReversePostOrder(start, [&reachable_blocks](BasicBlock* bb) { reachable_blocks.insert(bb); }); return reachable_blocks; } } // namespace ir } // namespace spvtools