// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "val/Function.h" #include #include #include #include #include #include "val/BasicBlock.h" #include "val/Construct.h" #include "validate.h" using std::ignore; using std::list; using std::make_pair; using std::pair; using std::tie; using std::vector; namespace { using libspirv::BasicBlock; // Computes a minimal set of root nodes required to traverse, in the forward // direction, the CFG represented by the given vector of blocks, and successor // and predecessor functions. When considering adding two nodes, each having // predecessors, favour using the one that appears earlier on the input blocks // list. std::vector TraversalRoots(const std::vector& blocks, libspirv::get_blocks_func succ_func, libspirv::get_blocks_func pred_func) { // The set of nodes which have been visited from any of the roots so far. std::unordered_set visited; auto mark_visited = [&visited](const BasicBlock* b) { visited.insert(b); }; auto ignore_block = [](const BasicBlock*) {}; auto ignore_blocks = [](const BasicBlock*, const BasicBlock*) {}; auto traverse_from_root = [&mark_visited, &succ_func, &ignore_block, &ignore_blocks](const BasicBlock* entry) { DepthFirstTraversal(entry, succ_func, mark_visited, ignore_block, ignore_blocks); }; std::vector result; // First collect nodes without predecessors. for (auto block : blocks) { if (pred_func(block)->empty()) { assert(visited.count(block) == 0 && "Malformed graph!"); result.push_back(block); traverse_from_root(block); } } // Now collect other stranded nodes. These must be in unreachable cycles. for (auto block : blocks) { if (visited.count(block) == 0) { result.push_back(block); traverse_from_root(block); } } return result; } } // anonymous namespace namespace libspirv { // Universal Limit of ResultID + 1 static const uint32_t kInvalidId = 0x400000; Function::Function(uint32_t function_id, uint32_t result_type_id, SpvFunctionControlMask function_control, uint32_t function_type_id) : id_(function_id), function_type_id_(function_type_id), result_type_id_(result_type_id), function_control_(function_control), declaration_type_(FunctionDecl::kFunctionDeclUnknown), end_has_been_registered_(false), blocks_(), current_block_(nullptr), pseudo_entry_block_(0), pseudo_exit_block_(kInvalidId), cfg_constructs_(), variable_ids_(), parameter_ids_() {} bool Function::IsFirstBlock(uint32_t block_id) const { return !ordered_blocks_.empty() && *first_block() == block_id; } spv_result_t Function::RegisterFunctionParameter(uint32_t parameter_id, uint32_t type_id) { assert(current_block_ == nullptr && "RegisterFunctionParameter can only be called when parsing the binary " "ouside of a block"); // TODO(umar): Validate function parameter type order and count // TODO(umar): Use these variables to validate parameter type (void)parameter_id; (void)type_id; return SPV_SUCCESS; } spv_result_t Function::RegisterLoopMerge(uint32_t merge_id, uint32_t continue_id) { RegisterBlock(merge_id, false); RegisterBlock(continue_id, false); BasicBlock& merge_block = blocks_.at(merge_id); BasicBlock& continue_target_block = blocks_.at(continue_id); assert(current_block_ && "RegisterLoopMerge must be called when called within a block"); current_block_->set_type(kBlockTypeLoop); merge_block.set_type(kBlockTypeMerge); continue_target_block.set_type(kBlockTypeContinue); Construct& loop_construct = AddConstruct({ConstructType::kLoop, current_block_, &merge_block}); Construct& continue_construct = AddConstruct({ConstructType::kContinue, &continue_target_block}); continue_construct.set_corresponding_constructs({&loop_construct}); loop_construct.set_corresponding_constructs({&continue_construct}); return SPV_SUCCESS; } spv_result_t Function::RegisterSelectionMerge(uint32_t merge_id) { RegisterBlock(merge_id, false); BasicBlock& merge_block = blocks_.at(merge_id); current_block_->set_type(kBlockTypeHeader); merge_block.set_type(kBlockTypeMerge); AddConstruct({ConstructType::kSelection, current_block(), &merge_block}); return SPV_SUCCESS; } spv_result_t Function::RegisterSetFunctionDeclType(FunctionDecl type) { assert(declaration_type_ == FunctionDecl::kFunctionDeclUnknown); declaration_type_ = type; return SPV_SUCCESS; } spv_result_t Function::RegisterBlock(uint32_t block_id, bool is_definition) { assert( declaration_type_ == FunctionDecl::kFunctionDeclDefinition && "RegisterBlocks can only be called after declaration_type_ is defined"); std::unordered_map::iterator inserted_block; bool success = false; tie(inserted_block, success) = blocks_.insert({block_id, BasicBlock(block_id)}); if (is_definition) { // new block definition assert(current_block_ == nullptr && "Register Block can only be called when parsing a binary outside of " "a BasicBlock"); undefined_blocks_.erase(block_id); current_block_ = &inserted_block->second; ordered_blocks_.push_back(current_block_); if (IsFirstBlock(block_id)) current_block_->set_reachable(true); } else if (success) { // Block doesn't exsist but this is not a definition undefined_blocks_.insert(block_id); } return SPV_SUCCESS; } void Function::RegisterBlockEnd(vector next_list, SpvOp branch_instruction) { assert( current_block_ && "RegisterBlockEnd can only be called when parsing a binary in a block"); vector next_blocks; next_blocks.reserve(next_list.size()); std::unordered_map::iterator inserted_block; bool success; for (uint32_t successor_id : next_list) { tie(inserted_block, success) = blocks_.insert({successor_id, BasicBlock(successor_id)}); if (success) { undefined_blocks_.insert(successor_id); } next_blocks.push_back(&inserted_block->second); } if (current_block_->is_type(kBlockTypeLoop)) { // For each loop header, record the set of its successors, and include // its continue target if the continue target is not the loop header // itself. std::vector& next_blocks_plus_continue_target = loop_header_successors_plus_continue_target_map_[current_block_]; next_blocks_plus_continue_target = next_blocks; auto continue_target = FindConstructForEntryBlock(current_block_) .corresponding_constructs() .back() ->entry_block(); if (continue_target != current_block_) { next_blocks_plus_continue_target.push_back(continue_target); } } current_block_->RegisterBranchInstruction(branch_instruction); current_block_->RegisterSuccessors(next_blocks); current_block_ = nullptr; return; } void Function::RegisterFunctionEnd() { if (!end_has_been_registered_) { end_has_been_registered_ = true; ComputeAugmentedCFG(); } } size_t Function::block_count() const { return blocks_.size(); } size_t Function::undefined_block_count() const { return undefined_blocks_.size(); } const vector& Function::ordered_blocks() const { return ordered_blocks_; } vector& Function::ordered_blocks() { return ordered_blocks_; } const BasicBlock* Function::current_block() const { return current_block_; } BasicBlock* Function::current_block() { return current_block_; } const list& Function::constructs() const { return cfg_constructs_; } list& Function::constructs() { return cfg_constructs_; } const BasicBlock* Function::first_block() const { if (ordered_blocks_.empty()) return nullptr; return ordered_blocks_[0]; } BasicBlock* Function::first_block() { if (ordered_blocks_.empty()) return nullptr; return ordered_blocks_[0]; } bool Function::IsBlockType(uint32_t merge_block_id, BlockType type) const { bool ret = false; const BasicBlock* block; tie(block, ignore) = GetBlock(merge_block_id); if (block) { ret = block->is_type(type); } return ret; } pair Function::GetBlock(uint32_t block_id) const { const auto b = blocks_.find(block_id); if (b != end(blocks_)) { const BasicBlock* block = &(b->second); bool defined = undefined_blocks_.find(block->id()) == end(undefined_blocks_); return make_pair(block, defined); } else { return make_pair(nullptr, false); } } pair Function::GetBlock(uint32_t block_id) { const BasicBlock* out; bool defined; tie(out, defined) = const_cast(this)->GetBlock(block_id); return make_pair(const_cast(out), defined); } Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunction() const { return [this](const BasicBlock* block) { auto where = augmented_successors_map_.find(block); return where == augmented_successors_map_.end() ? block->successors() : &(*where).second; }; } Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const { return [this](const BasicBlock* block) { auto where = loop_header_successors_plus_continue_target_map_.find(block); return where == loop_header_successors_plus_continue_target_map_.end() ? AugmentedCFGSuccessorsFunction()(block) : &(*where).second; }; } Function::GetBlocksFunction Function::AugmentedCFGPredecessorsFunction() const { return [this](const BasicBlock* block) { auto where = augmented_predecessors_map_.find(block); return where == augmented_predecessors_map_.end() ? block->predecessors() : &(*where).second; }; } void Function::ComputeAugmentedCFG() { // Compute the successors of the pseudo-entry block, and // the predecessors of the pseudo exit block. auto succ_func = [](const BasicBlock* b) { return b->successors(); }; auto pred_func = [](const BasicBlock* b) { return b->predecessors(); }; auto sources = TraversalRoots(ordered_blocks_, succ_func, pred_func); // For the predecessor traversals, reverse the order of blocks. This // will affect the post-dominance calculation as follows: // - Suppose you have blocks A and B, with A appearing before B in // the list of blocks. // - Also, A branches only to B, and B branches only to A. // - We want to compute A as dominating B, and B as post-dominating B. // By using reversed blocks for predecessor traversal roots discovery, // we'll add an edge from B to the pseudo-exit node, rather than from A. // All this is needed to correctly process the dominance/post-dominance // constraint when A is a loop header that points to itself as its // own continue target, and B is the latch block for the loop. std::vector reversed_blocks(ordered_blocks_.rbegin(), ordered_blocks_.rend()); auto sinks = TraversalRoots(reversed_blocks, pred_func, succ_func); // Wire up the pseudo entry block. augmented_successors_map_[&pseudo_entry_block_] = sources; for (auto block : sources) { auto& augmented_preds = augmented_predecessors_map_[block]; const auto& preds = *block->predecessors(); augmented_preds.reserve(1 + preds.size()); augmented_preds.push_back(&pseudo_entry_block_); augmented_preds.insert(augmented_preds.end(), preds.begin(), preds.end()); } // Wire up the pseudo exit block. augmented_predecessors_map_[&pseudo_exit_block_] = sinks; for (auto block : sinks) { auto& augmented_succ = augmented_successors_map_[block]; const auto& succ = *block->successors(); augmented_succ.reserve(1 + succ.size()); augmented_succ.push_back(&pseudo_exit_block_); augmented_succ.insert(augmented_succ.end(), succ.begin(), succ.end()); } }; Construct& Function::AddConstruct(const Construct& new_construct) { cfg_constructs_.push_back(new_construct); auto& result = cfg_constructs_.back(); entry_block_to_construct_[new_construct.entry_block()] = &result; return result; } Construct& Function::FindConstructForEntryBlock(const BasicBlock* entry_block) { auto where = entry_block_to_construct_.find(entry_block); assert(where != entry_block_to_construct_.end()); auto construct_ptr = (*where).second; assert(construct_ptr); return *construct_ptr; } } /// namespace libspirv