// Copyright (c) 2015-2016 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SOURCE_VAL_VALIDATE_H_ #define SOURCE_VAL_VALIDATE_H_ #include #include #include #include #include "source/instruction.h" #include "source/table.h" #include "spirv-tools/libspirv.h" namespace spvtools { namespace val { class ValidationState_t; class BasicBlock; class Instruction; /// @brief Performs the Control Flow Graph checks /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. SPV_ERROR_INVALID_CFG otherwise spv_result_t PerformCfgChecks(ValidationState_t& _); /// @brief Updates the use vectors of all instructions that can be referenced /// /// This function will update the vector which define where an instruction was /// referenced in the binary. /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. spv_result_t UpdateIdUse(ValidationState_t& _, const Instruction* inst); /// @brief This function checks all ID definitions dominate their use in the /// CFG. /// /// This function will iterate over all ID definitions that are defined in the /// functions of a module and make sure that the definitions appear in a /// block that dominates their use. /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. SPV_ERROR_INVALID_ID otherwise spv_result_t CheckIdDefinitionDominateUse(ValidationState_t& _); /// @brief This function checks for preconditions involving the adjacent /// instructions. /// /// This function will iterate over all instructions and check for any required /// predecessor and/or successor instructions. e.g. spv::Op::OpPhi must only be /// preceded by spv::Op::OpLabel, spv::Op::OpPhi, or spv::Op::OpLine. /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. SPV_ERROR_INVALID_DATA otherwise spv_result_t ValidateAdjacency(ValidationState_t& _); /// @brief Validates static uses of input and output variables /// /// Checks that any entry point that uses a input or output variable lists that /// variable in its interface. /// /// @param[in] _ the validation state of the module /// /// @return SPV_SUCCESS if no errors are found. spv_result_t ValidateInterfaces(ValidationState_t& _); /// @brief Validates memory instructions /// /// @param[in] _ the validation state of the module /// @return SPV_SUCCESS if no errors are found. spv_result_t MemoryPass(ValidationState_t& _, const Instruction* inst); /// @brief Updates the immediate dominator for each of the block edges /// /// Updates the immediate dominator of the blocks for each of the edges /// provided by the @p dom_edges parameter /// /// @param[in,out] dom_edges The edges of the dominator tree /// @param[in] set_func This function will be called to updated the Immediate /// dominator void UpdateImmediateDominators( const std::vector>& dom_edges, std::function set_func); /// @brief Prints all of the dominators of a BasicBlock /// /// @param[in] block The dominators of this block will be printed void printDominatorList(BasicBlock& block); /// Performs logical layout validation as described in section 2.4 of the SPIR-V /// spec. spv_result_t ModuleLayoutPass(ValidationState_t& _, const Instruction* inst); /// Performs Control Flow Graph validation and construction. spv_result_t CfgPass(ValidationState_t& _, const Instruction* inst); /// Validates Control Flow Graph instructions. spv_result_t ControlFlowPass(ValidationState_t& _, const Instruction* inst); /// Performs Id and SSA validation of a module spv_result_t IdPass(ValidationState_t& _, Instruction* inst); /// Performs instruction validation. spv_result_t InstructionPass(ValidationState_t& _, const Instruction* inst); /// Performs decoration validation. Assumes each decoration on a group /// has been propagated down to the group members. spv_result_t ValidateDecorations(ValidationState_t& _); /// Performs validation of built-in variables. spv_result_t ValidateBuiltIns(ValidationState_t& _); /// Validates type instructions. spv_result_t TypePass(ValidationState_t& _, const Instruction* inst); /// Validates constant instructions. spv_result_t ConstantPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of arithmetic instructions. spv_result_t ArithmeticsPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of composite instructions. spv_result_t CompositesPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of conversion instructions. spv_result_t ConversionPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of derivative instructions. spv_result_t DerivativesPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of logical instructions. spv_result_t LogicalsPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of bitwise instructions. spv_result_t BitwisePass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of image instructions. spv_result_t ImagePass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of atomic instructions. spv_result_t AtomicsPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of barrier instructions. spv_result_t BarriersPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of literal numbers. spv_result_t LiteralsPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of extension instructions. spv_result_t ExtensionPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of annotation instructions. spv_result_t AnnotationPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of non-uniform group instructions. spv_result_t NonUniformPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of debug instructions. spv_result_t DebugPass(ValidationState_t& _, const Instruction* inst); // Validates that capability declarations use operands allowed in the current // context. spv_result_t CapabilityPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of primitive instructions. spv_result_t PrimitivesPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of mode setting instructions. spv_result_t ModeSettingPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of function instructions. spv_result_t FunctionPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of miscellaneous instructions. spv_result_t MiscPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of ray query instructions. spv_result_t RayQueryPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of ray tracing instructions. spv_result_t RayTracingPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of shader execution reorder instructions. spv_result_t RayReorderNVPass(ValidationState_t& _, const Instruction* inst); /// Validates correctness of mesh shading instructions. spv_result_t MeshShadingPass(ValidationState_t& _, const Instruction* inst); /// Calculates the reachability of basic blocks. void ReachabilityPass(ValidationState_t& _); /// Validates execution limitations. /// /// Verifies execution models are allowed for all functionality they contain. spv_result_t ValidateExecutionLimitations(ValidationState_t& _, const Instruction* inst); /// Validates restricted uses of 8- and 16-bit types. /// /// Validates shaders that uses 8- or 16-bit storage capabilities, but not full /// capabilities only have appropriate uses of those types. spv_result_t ValidateSmallTypeUses(ValidationState_t& _, const Instruction* inst); /// @brief Validate the ID's within a SPIR-V binary /// /// @param[in] pInstructions array of instructions /// @param[in] count number of elements in instruction array /// @param[in] bound the binary header /// @param[in,out] position current word in the binary /// @param[in] consumer message consumer callback /// /// @return result code spv_result_t spvValidateIDs(const spv_instruction_t* pInstructions, const uint64_t count, const uint32_t bound, spv_position position, const MessageConsumer& consumer); // Performs validation for the SPIRV-V module binary. // The main difference between this API and spvValidateBinary is that the // "Validation State" is not destroyed upon function return; it lives on and is // pointed to by the vstate unique_ptr. spv_result_t ValidateBinaryAndKeepValidationState( const spv_const_context context, spv_const_validator_options options, const uint32_t* words, const size_t num_words, spv_diagnostic* pDiagnostic, std::unique_ptr* vstate); } // namespace val } // namespace spvtools #endif // SOURCE_VAL_VALIDATE_H_