// Copyright (c) 2018 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // This file implements the SSA rewriting algorithm proposed in // // Simple and Efficient Construction of Static Single Assignment Form. // Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013) // In: Jhala R., De Bosschere K. (eds) // Compiler Construction. CC 2013. // Lecture Notes in Computer Science, vol 7791. // Springer, Berlin, Heidelberg // // https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6 // // In contrast to common eager algorithms based on dominance and dominance // frontier information, this algorithm works backwards from load operations. // // When a target variable is loaded, it queries the variable's reaching // definition. If the reaching definition is unknown at the current location, // it searches backwards in the CFG, inserting Phi instructions at join points // in the CFG along the way until it finds the desired store instruction. // // The algorithm avoids repeated lookups using memoization. // // For reducible CFGs, which are a superset of the structured CFGs in SPIRV, // this algorithm is proven to produce minimal SSA. That is, it inserts the // minimal number of Phi instructions required to ensure the SSA property, but // some Phi instructions may be dead // (https://en.wikipedia.org/wiki/Static_single_assignment_form). #include "source/opt/ssa_rewrite_pass.h" #include #include #include "source/opcode.h" #include "source/opt/cfg.h" #include "source/opt/mem_pass.h" #include "source/opt/types.h" #include "source/util/make_unique.h" // Debug logging (0: Off, 1-N: Verbosity level). Replace this with the // implementation done for // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351 // #define SSA_REWRITE_DEBUGGING_LEVEL 3 #ifdef SSA_REWRITE_DEBUGGING_LEVEL #include #else #define SSA_REWRITE_DEBUGGING_LEVEL 0 #endif namespace spvtools { namespace opt { namespace { const uint32_t kStoreValIdInIdx = 1; const uint32_t kVariableInitIdInIdx = 1; const uint32_t kDebugDeclareOperandVariableIdx = 5; } // namespace std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const { std::ostringstream str; str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id() << "]("; if (phi_args_.size() > 0) { uint32_t arg_ix = 0; for (uint32_t pred_label : cfg->preds(bb_->id())) { uint32_t arg_id = phi_args_[arg_ix++]; str << "[%" << arg_id << ", bb(%" << pred_label << ")] "; } } str << ")"; if (copy_of_ != 0) { str << " [COPY OF " << copy_of_ << "]"; } str << ((is_complete_) ? " [COMPLETE]" : " [INCOMPLETE]"); return str.str(); } SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id, BasicBlock* bb) { // TODO(1841): Handle id overflow. uint32_t phi_result_id = pass_->context()->TakeNextId(); auto result = phi_candidates_.emplace( phi_result_id, PhiCandidate(var_id, phi_result_id, bb)); PhiCandidate& phi_candidate = result.first->second; return phi_candidate; } void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove, uint32_t repl_id) { for (uint32_t user_id : phi_to_remove.users()) { PhiCandidate* user_phi = GetPhiCandidate(user_id); BasicBlock* bb = pass_->context()->get_instr_block(user_id); if (user_phi) { // If the user is a Phi candidate, replace all arguments that refer to // |phi_to_remove.result_id()| with |repl_id|. for (uint32_t& arg : user_phi->phi_args()) { if (arg == phi_to_remove.result_id()) { arg = repl_id; } } } else if (bb->id() == user_id) { // The phi candidate is the definition of the variable at basic block // |bb|. We must change this to the replacement. WriteVariable(phi_to_remove.var_id(), bb, repl_id); } else { // For regular loads, traverse the |load_replacement_| table looking for // instances of |phi_to_remove|. for (auto& it : load_replacement_) { if (it.second == phi_to_remove.result_id()) { it.second = repl_id; } } } } } uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) { uint32_t same_id = 0; for (uint32_t arg_id : phi_candidate->phi_args()) { if (arg_id == same_id || arg_id == phi_candidate->result_id()) { // This is a self-reference operand or a reference to the same value ID. continue; } if (same_id != 0) { // This Phi candidate merges at least two values. Therefore, it is not // trivial. assert(phi_candidate->copy_of() == 0 && "Phi candidate transitioning from copy to non-copy."); return phi_candidate->result_id(); } same_id = arg_id; } // The previous logic has determined that this Phi candidate |phi_candidate| // is trivial. It is essentially the copy operation phi_candidate->phi_result // = Phi(same, same, same, ...). Since it is not necessary, we can re-route // all the users of |phi_candidate->phi_result| to all its users, and remove // |phi_candidate|. // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be // generated. phi_candidate->MarkCopyOf(same_id); assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments"); // Since |phi_candidate| always produces |same_id|, replace all the users of // |phi_candidate| with |same_id|. ReplacePhiUsersWith(*phi_candidate, same_id); return same_id; } uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) { assert(phi_candidate->phi_args().size() == 0 && "Phi candidate already has arguments"); bool found_0_arg = false; for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { BasicBlock* pred_bb = pass_->cfg()->block(pred); // If |pred_bb| is not sealed, use %0 to indicate that // |phi_candidate| needs to be completed after the whole CFG has // been processed. // // Note that we cannot call GetReachingDef() in these cases // because this would generate an empty Phi candidate in // |pred_bb|. When |pred_bb| is later processed, a new definition // for |phi_candidate->var_id_| will be lost because // |phi_candidate| will still be reached by the empty Phi. // // Consider: // // BB %23: // %38 = Phi[%i](%int_0[%1], %39[%25]) // // ... // // BB %25: [Starts unsealed] // %39 = Phi[%i]() // %34 = ... // OpStore %i %34 -> Currdef(%i) at %25 is %34 // OpBranch %23 // // When we first create the Phi in %38, we add an operandless Phi in // %39 to hold the unknown reaching def for %i. // // But then, when we go to complete %39 at the end. The reaching def // for %i in %25's predecessor is %38 itself. So we miss the fact // that %25 has a def for %i that should be used. // // By making the argument %0, we make |phi_candidate| incomplete, // which will cause it to be completed after the whole CFG has // been scanned. uint32_t arg_id = IsBlockSealed(pred_bb) ? GetReachingDef(phi_candidate->var_id(), pred_bb) : 0; phi_candidate->phi_args().push_back(arg_id); if (arg_id == 0) { found_0_arg = true; } else { // If this argument is another Phi candidate, add |phi_candidate| to the // list of users for the defining Phi. PhiCandidate* defining_phi = GetPhiCandidate(arg_id); if (defining_phi && defining_phi != phi_candidate) { defining_phi->AddUser(phi_candidate->result_id()); } } } // If we could not fill-in all the arguments of this Phi, mark it incomplete // so it gets completed after the whole CFG has been processed. if (found_0_arg) { phi_candidate->MarkIncomplete(); incomplete_phis_.push(phi_candidate); return phi_candidate->result_id(); } // Try to remove |phi_candidate|, if it's trivial. uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate); if (repl_id == phi_candidate->result_id()) { // |phi_candidate| is complete and not trivial. Add it to the // list of Phi candidates to generate. phi_candidate->MarkComplete(); phis_to_generate_.push_back(phi_candidate); } return repl_id; } uint32_t SSARewriter::GetValueAtBlock(uint32_t var_id, BasicBlock* bb) { assert(bb != nullptr); const auto& bb_it = defs_at_block_.find(bb); if (bb_it != defs_at_block_.end()) { const auto& current_defs = bb_it->second; const auto& var_it = current_defs.find(var_id); if (var_it != current_defs.end()) { return var_it->second; } } return 0; } uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) { // If |var_id| has a definition in |bb|, return it. uint32_t val_id = GetValueAtBlock(var_id, bb); if (val_id != 0) return val_id; // Otherwise, look up the value for |var_id| in |bb|'s predecessors. auto& predecessors = pass_->cfg()->preds(bb->id()); if (predecessors.size() == 1) { // If |bb| has exactly one predecessor, we look for |var_id|'s definition // there. val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0])); } else if (predecessors.size() > 1) { // If there is more than one predecessor, this is a join block which may // require a Phi instruction. This will act as |var_id|'s current // definition to break potential cycles. PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb); // Set the value for |bb| to avoid an infinite recursion. WriteVariable(var_id, bb, phi_candidate.result_id()); val_id = AddPhiOperands(&phi_candidate); } // If we could not find a store for this variable in the path from the root // of the CFG, the variable is not defined, so we use undef. if (val_id == 0) { val_id = pass_->GetUndefVal(var_id); if (val_id == 0) { return 0; } } WriteVariable(var_id, bb, val_id); return val_id; } void SSARewriter::SealBlock(BasicBlock* bb) { auto result = sealed_blocks_.insert(bb); (void)result; assert(result.second == true && "Tried to seal the same basic block more than once."); } void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) { auto opcode = inst->opcode(); assert((opcode == SpvOpStore || opcode == SpvOpVariable) && "Expecting a store or a variable definition instruction."); uint32_t var_id = 0; uint32_t val_id = 0; if (opcode == SpvOpStore) { (void)pass_->GetPtr(inst, &var_id); val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx); } else if (inst->NumInOperands() >= 2) { var_id = inst->result_id(); val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx); } if (pass_->IsTargetVar(var_id)) { WriteVariable(var_id, bb, val_id); pass_->context()->get_debug_info_mgr()->AddDebugValueIfVarDeclIsVisible( inst, var_id, val_id, inst, &decls_invisible_to_value_assignment_); #if SSA_REWRITE_DEBUGGING_LEVEL > 1 std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': " << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) << "\n"; #endif } } bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) { // Get the pointer that we are using to load from. uint32_t var_id = 0; (void)pass_->GetPtr(inst, &var_id); // Get the immediate reaching definition for |var_id|. // // In the presence of variable pointers, the reaching definition may be // another pointer. For example, the following fragment: // // %2 = OpVariable %_ptr_Input_float Input // %11 = OpVariable %_ptr_Function__ptr_Input_float Function // OpStore %11 %2 // %12 = OpLoad %_ptr_Input_float %11 // %13 = OpLoad %float %12 // // corresponds to the pseudo-code: // // layout(location = 0) in flat float *%2 // float %13; // float *%12; // float **%11; // *%11 = %2; // %12 = *%11; // %13 = *%12; // // which ultimately, should correspond to: // // %13 = *%2; // // During rewriting, the pointer %12 is found to be replaceable by %2 (i.e., // load_replacement_[12] is 2). However, when processing the load // %13 = *%12, the type of %12's reaching definition is another float // pointer (%2), instead of a float value. // // When this happens, we need to continue looking up the reaching definition // chain until we get to a float value or a non-target var (i.e. a variable // that cannot be SSA replaced, like %2 in this case since it is a function // argument). analysis::DefUseManager* def_use_mgr = pass_->context()->get_def_use_mgr(); analysis::TypeManager* type_mgr = pass_->context()->get_type_mgr(); analysis::Type* load_type = type_mgr->GetType(inst->type_id()); uint32_t val_id = 0; bool found_reaching_def = false; while (!found_reaching_def) { if (!pass_->IsTargetVar(var_id)) { // If the variable we are loading from is not an SSA target (globals, // function parameters), do nothing. return true; } val_id = GetReachingDef(var_id, bb); if (val_id == 0) { return false; } // If the reaching definition is a pointer type different than the type of // the instruction we are analyzing, then it must be a reference to another // pointer (otherwise, this would be invalid SPIRV). We continue // de-referencing it by making |val_id| be |var_id|. // // NOTE: if there is no reaching definition instruction, it means |val_id| // is an undef. Instruction* reaching_def_inst = def_use_mgr->GetDef(val_id); if (reaching_def_inst && !type_mgr->GetType(reaching_def_inst->type_id())->IsSame(load_type)) { var_id = val_id; } else { found_reaching_def = true; } } // Schedule a replacement for the result of this load instruction with // |val_id|. After all the rewriting decisions are made, every use of // this load will be replaced with |val_id|. uint32_t load_id = inst->result_id(); assert(load_replacement_.count(load_id) == 0); load_replacement_[load_id] = val_id; PhiCandidate* defining_phi = GetPhiCandidate(val_id); if (defining_phi) { defining_phi->AddUser(load_id); } #if SSA_REWRITE_DEBUGGING_LEVEL > 1 std::cerr << "\tFound load: " << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) << " (replacement for %" << load_id << " is %" << val_id << ")\n"; #endif return true; } void SSARewriter::PrintPhiCandidates() const { std::cerr << "\nPhi candidates:\n"; for (const auto& phi_it : phi_candidates_) { std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": " << phi_it.second.PrettyPrint(pass_->cfg()) << "\n"; } std::cerr << "\n"; } void SSARewriter::PrintReplacementTable() const { std::cerr << "\nLoad replacement table\n"; for (const auto& it : load_replacement_) { std::cerr << "\t%" << it.first << " -> %" << it.second << "\n"; } std::cerr << "\n"; } bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) { #if SSA_REWRITE_DEBUGGING_LEVEL > 1 std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n"; std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) << "\n"; #endif for (auto& inst : *bb) { auto opcode = inst.opcode(); if (opcode == SpvOpStore || opcode == SpvOpVariable) { ProcessStore(&inst, bb); } else if (inst.opcode() == SpvOpLoad) { if (!ProcessLoad(&inst, bb)) { return false; } } } // Seal |bb|. This means that all the stores in it have been scanned and // it's ready to feed them into its successors. SealBlock(bb); #if SSA_REWRITE_DEBUGGING_LEVEL > 1 PrintPhiCandidates(); PrintReplacementTable(); std::cerr << "\n\n"; #endif return true; } uint32_t SSARewriter::GetReplacement(std::pair repl) { uint32_t val_id = repl.second; auto it = load_replacement_.find(val_id); while (it != load_replacement_.end()) { val_id = it->second; it = load_replacement_.find(val_id); } return val_id; } uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate, uint32_t ix) { assert(phi_candidate->IsReady() && "Tried to get the final argument from an incomplete/trivial Phi"); uint32_t arg_id = phi_candidate->phi_args()[ix]; while (arg_id != 0) { PhiCandidate* phi_user = GetPhiCandidate(arg_id); if (phi_user == nullptr || phi_user->IsReady()) { // If the argument is not a Phi or it's a Phi candidate ready to be // emitted, return it. return arg_id; } arg_id = phi_user->copy_of(); } assert(false && "No Phi candidates in the copy-of chain are ready to be generated"); return 0; } bool SSARewriter::ApplyReplacements() { bool modified = false; #if SSA_REWRITE_DEBUGGING_LEVEL > 2 std::cerr << "\n\nApplying replacement decisions to IR\n\n"; PrintPhiCandidates(); PrintReplacementTable(); std::cerr << "\n\n"; #endif // Add Phi instructions from completed Phi candidates. std::vector generated_phis; for (const PhiCandidate* phi_candidate : phis_to_generate_) { #if SSA_REWRITE_DEBUGGING_LEVEL > 2 std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg()) << "\n"; #endif assert(phi_candidate->is_complete() && "Tried to instantiate a Phi instruction from an incomplete Phi " "candidate"); auto* local_var = pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id()); // Build the vector of operands for the new OpPhi instruction. uint32_t type_id = pass_->GetPointeeTypeId(local_var); std::vector phi_operands; uint32_t arg_ix = 0; std::unordered_map already_seen; for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) { uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++); if (already_seen.count(pred_label) == 0) { phi_operands.push_back( {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}}); phi_operands.push_back( {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}}); already_seen[pred_label] = op_val_id; } else { // It is possible that there are two edges from the same parent block. // Since the OpPhi can have only one entry for each parent, we have to // make sure the two edges are consistent with each other. assert(already_seen[pred_label] == op_val_id && "Inconsistent value for duplicate edges."); } } // Generate a new OpPhi instruction and insert it in its basic // block. std::unique_ptr phi_inst( new Instruction(pass_->context(), SpvOpPhi, type_id, phi_candidate->result_id(), phi_operands)); generated_phis.push_back(phi_inst.get()); pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst); pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb()); auto insert_it = phi_candidate->bb()->begin(); insert_it = insert_it.InsertBefore(std::move(phi_inst)); pass_->context()->get_decoration_mgr()->CloneDecorations( phi_candidate->var_id(), phi_candidate->result_id(), {SpvDecorationRelaxedPrecision}); // Add DebugValue for the new OpPhi instruction. insert_it->SetDebugScope(local_var->GetDebugScope()); pass_->context()->get_debug_info_mgr()->AddDebugValueIfVarDeclIsVisible( &*insert_it, phi_candidate->var_id(), phi_candidate->result_id(), &*insert_it, &decls_invisible_to_value_assignment_); modified = true; } // Scan uses for all inserted Phi instructions. Do this separately from the // registration of the Phi instruction itself to avoid trying to analyze // uses of Phi instructions that have not been registered yet. for (Instruction* phi_inst : generated_phis) { pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst); } #if SSA_REWRITE_DEBUGGING_LEVEL > 1 std::cerr << "\n\nReplacing the result of load instructions with the " "corresponding SSA id\n\n"; #endif // Apply replacements from the load replacement table. for (auto& repl : load_replacement_) { uint32_t load_id = repl.first; uint32_t val_id = GetReplacement(repl); Instruction* load_inst = pass_->context()->get_def_use_mgr()->GetDef(load_id); #if SSA_REWRITE_DEBUGGING_LEVEL > 2 std::cerr << "\t" << load_inst->PrettyPrint( SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) << " (%" << load_id << " -> %" << val_id << ")\n"; #endif // Remove the load instruction and replace all the uses of this load's // result with |val_id|. Kill any names or decorates using the load's // result before replacing to prevent incorrect replacement in those // instructions. pass_->context()->KillNamesAndDecorates(load_id); pass_->context()->ReplaceAllUsesWith(load_id, val_id); pass_->context()->KillInst(load_inst); modified = true; } return modified; } void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) { assert(phi_candidate->phi_args().size() > 0 && "Phi candidate should have arguments"); uint32_t ix = 0; for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { BasicBlock* pred_bb = pass_->cfg()->block(pred); uint32_t& arg_id = phi_candidate->phi_args()[ix++]; if (arg_id == 0) { // If |pred_bb| is still not sealed, it means it's unreachable. In this // case, we just use Undef as an argument. arg_id = IsBlockSealed(pred_bb) ? GetReachingDef(phi_candidate->var_id(), pred_bb) : pass_->GetUndefVal(phi_candidate->var_id()); } } // This candidate is now completed. phi_candidate->MarkComplete(); // If |phi_candidate| is not trivial, add it to the list of Phis to // generate. if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) { // If we could not remove |phi_candidate|, it means that it is complete // and not trivial. Add it to the list of Phis to generate. assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial."); phis_to_generate_.push_back(phi_candidate); } } void SSARewriter::FinalizePhiCandidates() { #if SSA_REWRITE_DEBUGGING_LEVEL > 1 std::cerr << "Finalizing Phi candidates:\n\n"; PrintPhiCandidates(); std::cerr << "\n"; #endif // Now, complete the collected candidates. while (incomplete_phis_.size() > 0) { PhiCandidate* phi_candidate = incomplete_phis_.front(); incomplete_phis_.pop(); FinalizePhiCandidate(phi_candidate); } } Pass::Status SSARewriter::AddDebugValuesForInvisibleDebugDecls(Function* fp) { // For the cases the value assignment is invisible to DebugDeclare e.g., // the argument passing for an inlined function. // // Before inlining foo(int x): // a = 3; // foo(3); // After inlining: // a = 3; // we want to specify "DebugValue: %x = %int_3" // foo and x disappeared! // // We want to specify the value for the variable using |defs_at_block_[bb]|, // where |bb| is the basic block contains the decl. DominatorAnalysis* dom_tree = pass_->context()->GetDominatorAnalysis(fp); Pass::Status status = Pass::Status::SuccessWithoutChange; for (auto* decl : decls_invisible_to_value_assignment_) { uint32_t var_id = decl->GetSingleWordOperand(kDebugDeclareOperandVariableIdx); auto* var = pass_->get_def_use_mgr()->GetDef(var_id); if (var->opcode() == SpvOpFunctionParameter) continue; auto* bb = pass_->context()->get_instr_block(decl); uint32_t value_id = GetValueAtBlock(var_id, bb); Instruction* value = nullptr; if (value_id) value = pass_->get_def_use_mgr()->GetDef(value_id); // If |value| is defined before the function body, it dominates |decl|. // If |value| dominates |decl|, we can set it as DebugValue. if (value && (pass_->context()->get_instr_block(value) == nullptr || dom_tree->Dominates(value, decl))) { if (pass_->context()->get_debug_info_mgr()->AddDebugValueForDecl( decl, value->result_id(), decl) == nullptr) { return Pass::Status::Failure; } } else { // If |value| in the same basic block does not dominate |decl|, we can // assign the value in the immediate dominator. value_id = GetValueAtBlock(var_id, dom_tree->ImmediateDominator(bb)); if (value_id && pass_->context()->get_debug_info_mgr()->AddDebugValueForDecl( decl, value_id, decl) == nullptr) { return Pass::Status::Failure; } } // DebugDeclares of target variables will be removed by // SSARewritePass::Process(). if (!pass_->IsTargetVar(var_id)) { pass_->context()->get_debug_info_mgr()->KillDebugDeclares(var_id); } status = Pass::Status::SuccessWithChange; } return status; } Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) { #if SSA_REWRITE_DEBUGGING_LEVEL > 0 std::cerr << "Function before SSA rewrite:\n" << fp->PrettyPrint(0) << "\n\n\n"; #endif // Collect variables that can be converted into SSA IDs. pass_->CollectTargetVars(fp); // Generate all the SSA replacements and Phi candidates. This will // generate incomplete and trivial Phis. bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder( fp->entry().get(), [this](BasicBlock* bb) { if (!GenerateSSAReplacements(bb)) { return false; } return true; }); if (!succeeded) { return Pass::Status::Failure; } // Remove trivial Phis and add arguments to incomplete Phis. FinalizePhiCandidates(); // Finally, apply all the replacements in the IR. bool modified = ApplyReplacements(); auto status = AddDebugValuesForInvisibleDebugDecls(fp); if (status == Pass::Status::SuccessWithChange || status == Pass::Status::Failure) { return status; } #if SSA_REWRITE_DEBUGGING_LEVEL > 0 std::cerr << "\n\n\nFunction after SSA rewrite:\n" << fp->PrettyPrint(0) << "\n"; #endif return modified ? Pass::Status::SuccessWithChange : Pass::Status::SuccessWithoutChange; } Pass::Status SSARewritePass::Process() { Status status = Status::SuccessWithoutChange; for (auto& fn : *get_module()) { status = CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn)); // Kill DebugDeclares for target variables. for (auto var_id : seen_target_vars_) { context()->get_debug_info_mgr()->KillDebugDeclares(var_id); } if (status == Status::Failure) { break; } } return status; } } // namespace opt } // namespace spvtools