// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "opt/loop_descriptor.h" #include #include #include #include #include "constants.h" #include "opt/cfg.h" #include "opt/dominator_tree.h" #include "opt/ir_builder.h" #include "opt/ir_context.h" #include "opt/iterator.h" #include "opt/make_unique.h" #include "opt/tree_iterator.h" namespace spvtools { namespace ir { // Takes in a phi instruction |induction| and the loop |header| and returns the // step operation of the loop. ir::Instruction* Loop::GetInductionStepOperation( const ir::Instruction* induction) const { // Induction must be a phi instruction. assert(induction->opcode() == SpvOpPhi); ir::Instruction* step = nullptr; opt::analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr(); // Traverse the incoming operands of the phi instruction. for (uint32_t operand_id = 1; operand_id < induction->NumInOperands(); operand_id += 2) { // Incoming edge. ir::BasicBlock* incoming_block = context_->cfg()->block(induction->GetSingleWordInOperand(operand_id)); // Check if the block is dominated by header, and thus coming from within // the loop. if (IsInsideLoop(incoming_block)) { step = def_use_manager->GetDef( induction->GetSingleWordInOperand(operand_id - 1)); break; } } if (!step || !IsSupportedStepOp(step->opcode())) { return nullptr; } // The induction variable which binds the loop must only be modified once. uint32_t lhs = step->GetSingleWordInOperand(0); uint32_t rhs = step->GetSingleWordInOperand(1); // One of the left hand side or right hand side of the step instruction must // be the induction phi and the other must be an OpConstant. if (lhs != induction->result_id() && rhs != induction->result_id()) { return nullptr; } if (def_use_manager->GetDef(lhs)->opcode() != SpvOp::SpvOpConstant && def_use_manager->GetDef(rhs)->opcode() != SpvOp::SpvOpConstant) { return nullptr; } return step; } // Returns true if the |step| operation is an induction variable step operation // which is currently handled. bool Loop::IsSupportedStepOp(SpvOp step) const { switch (step) { case SpvOp::SpvOpISub: case SpvOp::SpvOpIAdd: return true; default: return false; } } bool Loop::IsSupportedCondition(SpvOp condition) const { switch (condition) { // < case SpvOp::SpvOpULessThan: case SpvOp::SpvOpSLessThan: // > case SpvOp::SpvOpUGreaterThan: case SpvOp::SpvOpSGreaterThan: // >= case SpvOp::SpvOpSGreaterThanEqual: case SpvOp::SpvOpUGreaterThanEqual: // <= case SpvOp::SpvOpSLessThanEqual: case SpvOp::SpvOpULessThanEqual: return true; default: return false; } } int64_t Loop::GetResidualConditionValue(SpvOp condition, int64_t initial_value, int64_t step_value, size_t number_of_iterations, size_t factor) { int64_t remainder = initial_value + (number_of_iterations % factor) * step_value; // We subtract or add one as the above formula calculates the remainder if the // loop where just less than or greater than. Adding or subtracting one should // give a functionally equivalent value. switch (condition) { case SpvOp::SpvOpSGreaterThanEqual: case SpvOp::SpvOpUGreaterThanEqual: { remainder -= 1; break; } case SpvOp::SpvOpSLessThanEqual: case SpvOp::SpvOpULessThanEqual: { remainder += 1; break; } default: break; } return remainder; } // Extract the initial value from the |induction| OpPhi instruction and store it // in |value|. If the function couldn't find the initial value of |induction| // return false. bool Loop::GetInductionInitValue(const ir::Instruction* induction, int64_t* value) const { ir::Instruction* constant_instruction = nullptr; opt::analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr(); for (uint32_t operand_id = 0; operand_id < induction->NumInOperands(); operand_id += 2) { ir::BasicBlock* bb = context_->cfg()->block( induction->GetSingleWordInOperand(operand_id + 1)); if (!IsInsideLoop(bb)) { constant_instruction = def_use_manager->GetDef( induction->GetSingleWordInOperand(operand_id)); } } if (!constant_instruction) return false; const opt::analysis::Constant* constant = context_->get_constant_mgr()->FindDeclaredConstant( constant_instruction->result_id()); if (!constant) return false; if (value) { const opt::analysis::Integer* type = constant->AsIntConstant()->type()->AsInteger(); if (type->IsSigned()) { *value = constant->AsIntConstant()->GetS32BitValue(); } else { *value = constant->AsIntConstant()->GetU32BitValue(); } } return true; } Loop::Loop(IRContext* context, opt::DominatorAnalysis* dom_analysis, BasicBlock* header, BasicBlock* continue_target, BasicBlock* merge_target) : context_(context), loop_header_(header), loop_continue_(continue_target), loop_merge_(merge_target), loop_preheader_(nullptr), parent_(nullptr), loop_is_marked_for_removal_(false) { assert(context); assert(dom_analysis); loop_preheader_ = FindLoopPreheader(dom_analysis); } BasicBlock* Loop::FindLoopPreheader(opt::DominatorAnalysis* dom_analysis) { CFG* cfg = context_->cfg(); opt::DominatorTree& dom_tree = dom_analysis->GetDomTree(); opt::DominatorTreeNode* header_node = dom_tree.GetTreeNode(loop_header_); // The loop predecessor. BasicBlock* loop_pred = nullptr; auto header_pred = cfg->preds(loop_header_->id()); for (uint32_t p_id : header_pred) { opt::DominatorTreeNode* node = dom_tree.GetTreeNode(p_id); if (node && !dom_tree.Dominates(header_node, node)) { // The predecessor is not part of the loop, so potential loop preheader. if (loop_pred && node->bb_ != loop_pred) { // If we saw 2 distinct predecessors that are outside the loop, we don't // have a loop preheader. return nullptr; } loop_pred = node->bb_; } } // Safe guard against invalid code, SPIR-V spec forbids loop with the entry // node as header. assert(loop_pred && "The header node is the entry block ?"); // So we have a unique basic block that can enter this loop. // If this loop is the unique successor of this block, then it is a loop // preheader. bool is_preheader = true; uint32_t loop_header_id = loop_header_->id(); const auto* const_loop_pred = loop_pred; const_loop_pred->ForEachSuccessorLabel( [&is_preheader, loop_header_id](const uint32_t id) { if (id != loop_header_id) is_preheader = false; }); if (is_preheader) return loop_pred; return nullptr; } bool Loop::IsInsideLoop(Instruction* inst) const { const BasicBlock* parent_block = context_->get_instr_block(inst); if (!parent_block) return false; return IsInsideLoop(parent_block); } bool Loop::IsBasicBlockInLoopSlow(const BasicBlock* bb) { assert(bb->GetParent() && "The basic block does not belong to a function"); opt::DominatorAnalysis* dom_analysis = context_->GetDominatorAnalysis(bb->GetParent(), *context_->cfg()); if (!dom_analysis->Dominates(GetHeaderBlock(), bb)) return false; opt::PostDominatorAnalysis* postdom_analysis = context_->GetPostDominatorAnalysis(bb->GetParent(), *context_->cfg()); if (!postdom_analysis->Dominates(GetMergeBlock(), bb)) return false; return true; } BasicBlock* Loop::GetOrCreatePreHeaderBlock() { if (loop_preheader_) return loop_preheader_; Function* fn = loop_header_->GetParent(); // Find the insertion point for the preheader. Function::iterator header_it = std::find_if(fn->begin(), fn->end(), [this](BasicBlock& bb) { return &bb == loop_header_; }); assert(header_it != fn->end()); // Create the preheader basic block. loop_preheader_ = &*header_it.InsertBefore(std::unique_ptr( new ir::BasicBlock(std::unique_ptr(new ir::Instruction( context_, SpvOpLabel, 0, context_->TakeNextId(), {}))))); loop_preheader_->SetParent(fn); uint32_t loop_preheader_id = loop_preheader_->id(); // Redirect the branches and patch the phi: // - For each phi instruction in the header: // - If the header has only 1 out-of-loop incoming branch: // - Change the incomning branch to be the preheader. // - If the header has more than 1 out-of-loop incoming branch: // - Create a new phi in the preheader, gathering all out-of-loops // incoming values; // - Patch the header phi instruction to use the preheader phi // instruction; // - Redirect all edges coming from outside the loop to the preheader. opt::InstructionBuilder builder( context_, loop_preheader_, ir::IRContext::kAnalysisDefUse | ir::IRContext::kAnalysisInstrToBlockMapping); // Patch all the phi instructions. loop_header_->ForEachPhiInst([&builder, this](Instruction* phi) { std::vector preheader_phi_ops; std::vector header_phi_ops; for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) { uint32_t def_id = phi->GetSingleWordInOperand(i); uint32_t branch_id = phi->GetSingleWordInOperand(i + 1); if (IsInsideLoop(branch_id)) { header_phi_ops.push_back(def_id); header_phi_ops.push_back(branch_id); } else { preheader_phi_ops.push_back(def_id); preheader_phi_ops.push_back(branch_id); } } Instruction* preheader_insn_def = nullptr; // Create a phi instruction if and only if the preheader_phi_ops has more // than one pair. if (preheader_phi_ops.size() > 2) preheader_insn_def = builder.AddPhi(phi->type_id(), preheader_phi_ops); else preheader_insn_def = context_->get_def_use_mgr()->GetDef(preheader_phi_ops[0]); // Build the new incoming edge. header_phi_ops.push_back(preheader_insn_def->result_id()); header_phi_ops.push_back(loop_preheader_->id()); // Rewrite operands of the header's phi instruction. uint32_t idx = 0; for (; idx < header_phi_ops.size(); idx++) phi->SetInOperand(idx, {header_phi_ops[idx]}); // Remove extra operands, from last to first (more efficient). for (uint32_t j = phi->NumInOperands() - 1; j >= idx; j--) phi->RemoveInOperand(j); }); // Branch from the preheader to the header. builder.AddBranch(loop_header_->id()); // Redirect all out of loop branches to the header to the preheader. CFG* cfg = context_->cfg(); cfg->RegisterBlock(loop_preheader_); for (uint32_t pred_id : cfg->preds(loop_header_->id())) { if (pred_id == loop_preheader_->id()) continue; if (IsInsideLoop(pred_id)) continue; BasicBlock* pred = cfg->block(pred_id); pred->ForEachSuccessorLabel([this, loop_preheader_id](uint32_t* id) { if (*id == loop_header_->id()) *id = loop_preheader_id; }); cfg->AddEdge(pred_id, loop_preheader_id); } // Delete predecessors that are no longer predecessors of the loop header. cfg->RemoveNonExistingEdges(loop_header_->id()); // Update the loop descriptors. if (HasParent()) { GetParent()->AddBasicBlock(loop_preheader_); context_->GetLoopDescriptor(fn)->SetBasicBlockToLoop(loop_preheader_->id(), GetParent()); } context_->InvalidateAnalysesExceptFor( builder.GetPreservedAnalysis() | ir::IRContext::Analysis::kAnalysisLoopAnalysis | ir::IRContext::kAnalysisCFG); return loop_preheader_; } void Loop::SetLatchBlock(BasicBlock* latch) { #ifndef NDEBUG assert(latch->GetParent() && "The basic block does not belong to a function"); const auto* const_latch = latch; const_latch->ForEachSuccessorLabel([this](uint32_t id) { assert((!IsInsideLoop(id) || id == GetHeaderBlock()->id()) && "A predecessor of the continue block does not belong to the loop"); }); #endif // NDEBUG assert(IsInsideLoop(latch) && "The continue block is not in the loop"); SetLatchBlockImpl(latch); } void Loop::SetMergeBlock(BasicBlock* merge) { #ifndef NDEBUG assert(merge->GetParent() && "The basic block does not belong to a function"); #endif // NDEBUG assert(!IsInsideLoop(merge) && "The merge block is in the loop"); SetMergeBlockImpl(merge); if (GetHeaderBlock()->GetLoopMergeInst()) { UpdateLoopMergeInst(); } } void Loop::GetExitBlocks(std::unordered_set* exit_blocks) const { ir::CFG* cfg = context_->cfg(); exit_blocks->clear(); for (uint32_t bb_id : GetBlocks()) { const spvtools::ir::BasicBlock* bb = cfg->block(bb_id); bb->ForEachSuccessorLabel([exit_blocks, this](uint32_t succ) { if (!IsInsideLoop(succ)) { exit_blocks->insert(succ); } }); } } void Loop::GetMergingBlocks( std::unordered_set* merging_blocks) const { assert(GetMergeBlock() && "This loop is not structured"); ir::CFG* cfg = context_->cfg(); merging_blocks->clear(); std::stack to_visit; to_visit.push(GetMergeBlock()); while (!to_visit.empty()) { const ir::BasicBlock* bb = to_visit.top(); to_visit.pop(); merging_blocks->insert(bb->id()); for (uint32_t pred_id : cfg->preds(bb->id())) { if (!IsInsideLoop(pred_id) && !merging_blocks->count(pred_id)) { to_visit.push(cfg->block(pred_id)); } } } } bool Loop::IsLCSSA() const { ir::CFG* cfg = context_->cfg(); opt::analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr(); std::unordered_set exit_blocks; GetExitBlocks(&exit_blocks); // Declare ir_context so we can capture context_ in the below lambda ir::IRContext* ir_context = context_; for (uint32_t bb_id : GetBlocks()) { for (Instruction& insn : *cfg->block(bb_id)) { // All uses must be either: // - In the loop; // - In an exit block and in a phi instruction. if (!def_use_mgr->WhileEachUser( &insn, [&exit_blocks, ir_context, this](ir::Instruction* use) -> bool { BasicBlock* parent = ir_context->get_instr_block(use); assert(parent && "Invalid analysis"); if (IsInsideLoop(parent)) return true; if (use->opcode() != SpvOpPhi) return false; return exit_blocks.count(parent->id()); })) return false; } } return true; } bool Loop::ShouldHoistInstruction(IRContext* context, Instruction* inst) { return AreAllOperandsOutsideLoop(context, inst) && inst->IsOpcodeCodeMotionSafe(); } bool Loop::AreAllOperandsOutsideLoop(IRContext* context, Instruction* inst) { opt::analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); bool all_outside_loop = true; const std::function operand_outside_loop = [this, &def_use_mgr, &all_outside_loop](uint32_t* id) { if (this->IsInsideLoop(def_use_mgr->GetDef(*id))) { all_outside_loop = false; return; } }; inst->ForEachInId(operand_outside_loop); return all_outside_loop; } void Loop::ComputeLoopStructuredOrder( std::vector* ordered_loop_blocks, bool include_pre_header, bool include_merge) const { ir::CFG& cfg = *context_->cfg(); // Reserve the memory: all blocks in the loop + extra if needed. ordered_loop_blocks->reserve(GetBlocks().size() + include_pre_header + include_merge); if (include_pre_header && GetPreHeaderBlock()) ordered_loop_blocks->push_back(loop_preheader_); cfg.ForEachBlockInReversePostOrder( loop_header_, [ordered_loop_blocks, this](BasicBlock* bb) { if (IsInsideLoop(bb)) ordered_loop_blocks->push_back(bb); }); if (include_merge && GetMergeBlock()) ordered_loop_blocks->push_back(loop_merge_); } LoopDescriptor::LoopDescriptor(const Function* f) : loops_() { PopulateList(f); } LoopDescriptor::~LoopDescriptor() { ClearLoops(); } void LoopDescriptor::PopulateList(const Function* f) { IRContext* context = f->GetParent()->context(); opt::DominatorAnalysis* dom_analysis = context->GetDominatorAnalysis(f, *context->cfg()); ClearLoops(); // Post-order traversal of the dominator tree to find all the OpLoopMerge // instructions. opt::DominatorTree& dom_tree = dom_analysis->GetDomTree(); for (opt::DominatorTreeNode& node : ir::make_range(dom_tree.post_begin(), dom_tree.post_end())) { Instruction* merge_inst = node.bb_->GetLoopMergeInst(); if (merge_inst) { // The id of the merge basic block of this loop. uint32_t merge_bb_id = merge_inst->GetSingleWordOperand(0); // The id of the continue basic block of this loop. uint32_t continue_bb_id = merge_inst->GetSingleWordOperand(1); // The merge target of this loop. BasicBlock* merge_bb = context->cfg()->block(merge_bb_id); // The continue target of this loop. BasicBlock* continue_bb = context->cfg()->block(continue_bb_id); // The basic block containing the merge instruction. BasicBlock* header_bb = context->get_instr_block(merge_inst); // Add the loop to the list of all the loops in the function. Loop* current_loop = new Loop(context, dom_analysis, header_bb, continue_bb, merge_bb); loops_.push_back(current_loop); // We have a bottom-up construction, so if this loop has nested-loops, // they are by construction at the tail of the loop list. for (auto itr = loops_.rbegin() + 1; itr != loops_.rend(); ++itr) { Loop* previous_loop = *itr; // If the loop already has a parent, then it has been processed. if (previous_loop->HasParent()) continue; // If the current loop does not dominates the previous loop then it is // not nested loop. if (!dom_analysis->Dominates(header_bb, previous_loop->GetHeaderBlock())) continue; // If the current loop merge dominates the previous loop then it is // not nested loop. if (dom_analysis->Dominates(merge_bb, previous_loop->GetHeaderBlock())) continue; current_loop->AddNestedLoop(previous_loop); } opt::DominatorTreeNode* dom_merge_node = dom_tree.GetTreeNode(merge_bb); for (opt::DominatorTreeNode& loop_node : make_range(node.df_begin(), node.df_end())) { // Check if we are in the loop. if (dom_tree.Dominates(dom_merge_node, &loop_node)) continue; current_loop->AddBasicBlock(loop_node.bb_); basic_block_to_loop_.insert( std::make_pair(loop_node.bb_->id(), current_loop)); } } } for (Loop* loop : loops_) { if (!loop->HasParent()) dummy_top_loop_.nested_loops_.push_back(loop); } } ir::BasicBlock* Loop::FindConditionBlock() const { const ir::Function& function = *loop_merge_->GetParent(); ir::BasicBlock* condition_block = nullptr; const opt::DominatorAnalysis* dom_analysis = context_->GetDominatorAnalysis(&function, *context_->cfg()); ir::BasicBlock* bb = dom_analysis->ImmediateDominator(loop_merge_); if (!bb) return nullptr; const ir::Instruction& branch = *bb->ctail(); // Make sure the branch is a conditional branch. if (branch.opcode() != SpvOpBranchConditional) return nullptr; // Make sure one of the two possible branches is to the merge block. if (branch.GetSingleWordInOperand(1) == loop_merge_->id() || branch.GetSingleWordInOperand(2) == loop_merge_->id()) { condition_block = bb; } return condition_block; } bool Loop::FindNumberOfIterations(const ir::Instruction* induction, const ir::Instruction* branch_inst, size_t* iterations_out, int64_t* step_value_out, int64_t* init_value_out) const { // From the branch instruction find the branch condition. opt::analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr(); // Condition instruction from the OpConditionalBranch. ir::Instruction* condition = def_use_manager->GetDef(branch_inst->GetSingleWordOperand(0)); assert(IsSupportedCondition(condition->opcode())); // Get the constant manager from the ir context. opt::analysis::ConstantManager* const_manager = context_->get_constant_mgr(); // Find the constant value used by the condition variable. Exit out if it // isn't a constant int. const opt::analysis::Constant* upper_bound = const_manager->FindDeclaredConstant(condition->GetSingleWordOperand(3)); if (!upper_bound) return false; // Must be integer because of the opcode on the condition. int64_t condition_value = 0; const opt::analysis::Integer* type = upper_bound->AsIntConstant()->type()->AsInteger(); if (type->IsSigned()) { condition_value = upper_bound->AsIntConstant()->GetS32BitValue(); } else { condition_value = upper_bound->AsIntConstant()->GetU32BitValue(); } // Find the instruction which is stepping through the loop. ir::Instruction* step_inst = GetInductionStepOperation(induction); if (!step_inst) return false; // Find the constant value used by the condition variable. const opt::analysis::Constant* step_constant = const_manager->FindDeclaredConstant(step_inst->GetSingleWordOperand(3)); if (!step_constant) return false; // Must be integer because of the opcode on the condition. int64_t step_value = 0; const opt::analysis::Integer* step_type = step_constant->AsIntConstant()->type()->AsInteger(); if (step_type->IsSigned()) { step_value = step_constant->AsIntConstant()->GetS32BitValue(); } else { step_value = step_constant->AsIntConstant()->GetU32BitValue(); } // If this is a subtraction step we should negate the step value. if (step_inst->opcode() == SpvOp::SpvOpISub) { step_value = -step_value; } // Find the inital value of the loop and make sure it is a constant integer. int64_t init_value = 0; if (!GetInductionInitValue(induction, &init_value)) return false; // If iterations is non null then store the value in that. int64_t num_itrs = GetIterations(condition->opcode(), condition_value, init_value, step_value); // If the loop body will not be reached return false. if (num_itrs <= 0) { return false; } if (iterations_out) { assert(static_cast(num_itrs) <= std::numeric_limits::max()); *iterations_out = static_cast(num_itrs); } if (step_value_out) { *step_value_out = step_value; } if (init_value_out) { *init_value_out = init_value; } return true; } // We retrieve the number of iterations using the following formula, diff / // |step_value| where diff is calculated differently according to the // |condition| and uses the |condition_value| and |init_value|. If diff / // |step_value| is NOT cleanly divisable then we add one to the sum. int64_t Loop::GetIterations(SpvOp condition, int64_t condition_value, int64_t init_value, int64_t step_value) const { int64_t diff = 0; switch (condition) { case SpvOp::SpvOpSLessThan: case SpvOp::SpvOpULessThan: { // If the condition is not met to begin with the loop will never iterate. if (!(init_value < condition_value)) return 0; diff = condition_value - init_value; // If the operation is a less then operation then the diff and step must // have the same sign otherwise the induction will never cross the // condition (either never true or always true). if ((diff < 0 && step_value > 0) || (diff > 0 && step_value < 0)) { return 0; } break; } case SpvOp::SpvOpSGreaterThan: case SpvOp::SpvOpUGreaterThan: { // If the condition is not met to begin with the loop will never iterate. if (!(init_value > condition_value)) return 0; diff = init_value - condition_value; // If the operation is a greater than operation then the diff and step // must have opposite signs. Otherwise the condition will always be true // or will never be true. if ((diff < 0 && step_value < 0) || (diff > 0 && step_value > 0)) { return 0; } break; } case SpvOp::SpvOpSGreaterThanEqual: case SpvOp::SpvOpUGreaterThanEqual: { // If the condition is not met to begin with the loop will never iterate. if (!(init_value >= condition_value)) return 0; // We subract one to make it the same as SpvOpGreaterThan as it is // functionally equivalent. diff = init_value - (condition_value - 1); // If the operation is a greater than operation then the diff and step // must have opposite signs. Otherwise the condition will always be true // or will never be true. if ((diff > 0 && step_value > 0) || (diff < 0 && step_value < 0)) { return 0; } break; } case SpvOp::SpvOpSLessThanEqual: case SpvOp::SpvOpULessThanEqual: { // If the condition is not met to begin with the loop will never iterate. if (!(init_value <= condition_value)) return 0; // We add one to make it the same as SpvOpLessThan as it is functionally // equivalent. diff = (condition_value + 1) - init_value; // If the operation is a less than operation then the diff and step must // have the same sign otherwise the induction will never cross the // condition (either never true or always true). if ((diff < 0 && step_value > 0) || (diff > 0 && step_value < 0)) { return 0; } break; } default: assert(false && "Could not retrieve number of iterations from the loop condition. " "Condition is not supported."); } // Take the abs of - step values. step_value = llabs(step_value); diff = llabs(diff); int64_t result = diff / step_value; if (diff % step_value != 0) { result += 1; } return result; } // Returns the list of induction variables within the loop. void Loop::GetInductionVariables( std::vector& induction_variables) const { for (ir::Instruction& inst : *loop_header_) { if (inst.opcode() == SpvOp::SpvOpPhi) { induction_variables.push_back(&inst); } } } ir::Instruction* Loop::FindConditionVariable( const ir::BasicBlock* condition_block) const { // Find the branch instruction. const ir::Instruction& branch_inst = *condition_block->ctail(); ir::Instruction* induction = nullptr; // Verify that the branch instruction is a conditional branch. if (branch_inst.opcode() == SpvOp::SpvOpBranchConditional) { // From the branch instruction find the branch condition. opt::analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr(); // Find the instruction representing the condition used in the conditional // branch. ir::Instruction* condition = def_use_manager->GetDef(branch_inst.GetSingleWordOperand(0)); // Ensure that the condition is a less than operation. if (condition && IsSupportedCondition(condition->opcode())) { // The left hand side operand of the operation. ir::Instruction* variable_inst = def_use_manager->GetDef(condition->GetSingleWordOperand(2)); // Make sure the variable instruction used is a phi. if (!variable_inst || variable_inst->opcode() != SpvOpPhi) return nullptr; // Make sure the phi instruction only has two incoming blocks. Each // incoming block will be represented by two in operands in the phi // instruction, the value and the block which that value came from. We // assume the cannocalised phi will have two incoming values, one from the // preheader and one from the continue block. size_t max_supported_operands = 4; if (variable_inst->NumInOperands() == max_supported_operands) { // The operand index of the first incoming block label. uint32_t operand_label_1 = 1; // The operand index of the second incoming block label. uint32_t operand_label_2 = 3; // Make sure one of them is the preheader. if (variable_inst->GetSingleWordInOperand(operand_label_1) != loop_preheader_->id() && variable_inst->GetSingleWordInOperand(operand_label_2) != loop_preheader_->id()) { return nullptr; } // And make sure that the other is the latch block. if (variable_inst->GetSingleWordInOperand(operand_label_1) != loop_continue_->id() && variable_inst->GetSingleWordInOperand(operand_label_2) != loop_continue_->id()) { return nullptr; } } else { return nullptr; } if (!FindNumberOfIterations(variable_inst, &branch_inst, nullptr)) return nullptr; induction = variable_inst; } } return induction; } // Add and remove loops which have been marked for addition and removal to // maintain the state of the loop descriptor class. void LoopDescriptor::PostModificationCleanup() { LoopContainerType loops_to_remove_; for (ir::Loop* loop : loops_) { if (loop->IsMarkedForRemoval()) { loops_to_remove_.push_back(loop); if (loop->HasParent()) { loop->GetParent()->RemoveChildLoop(loop); } } } for (ir::Loop* loop : loops_to_remove_) { loops_.erase(std::find(loops_.begin(), loops_.end(), loop)); } for (auto& pair : loops_to_add_) { ir::Loop* parent = pair.first; ir::Loop* loop = pair.second; if (parent) { loop->SetParent(nullptr); parent->AddNestedLoop(loop); for (uint32_t block_id : loop->GetBlocks()) { parent->AddBasicBlock(block_id); } } loops_.emplace_back(loop); } loops_to_add_.clear(); } void LoopDescriptor::ClearLoops() { for (Loop* loop : loops_) { delete loop; } loops_.clear(); } } // namespace ir } // namespace spvtools