// Copyright (c) 2018 The Khronos Group Inc. // Copyright (c) 2018 Valve Corporation // Copyright (c) 2018 LunarG Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "inst_bindless_check_pass.h" #include "source/spirv_constant.h" namespace spvtools { namespace opt { namespace { // Input Operand Indices constexpr int kSpvImageSampleImageIdInIdx = 0; constexpr int kSpvSampledImageImageIdInIdx = 0; constexpr int kSpvSampledImageSamplerIdInIdx = 1; constexpr int kSpvImageSampledImageIdInIdx = 0; constexpr int kSpvCopyObjectOperandIdInIdx = 0; constexpr int kSpvLoadPtrIdInIdx = 0; constexpr int kSpvAccessChainBaseIdInIdx = 0; constexpr int kSpvAccessChainIndex0IdInIdx = 1; constexpr int kSpvTypeArrayTypeIdInIdx = 0; constexpr int kSpvTypeArrayLengthIdInIdx = 1; constexpr int kSpvConstantValueInIdx = 0; constexpr int kSpvVariableStorageClassInIdx = 0; constexpr int kSpvTypePtrTypeIdInIdx = 1; constexpr int kSpvTypeImageDim = 1; constexpr int kSpvTypeImageDepth = 2; constexpr int kSpvTypeImageArrayed = 3; constexpr int kSpvTypeImageMS = 4; constexpr int kSpvTypeImageSampled = 5; } // namespace void InstBindlessCheckPass::SetupInputBufferIds() { if (input_buffer_id_ != 0) { return; } AddStorageBufferExt(); if (!get_feature_mgr()->HasExtension(kSPV_KHR_physical_storage_buffer)) { context()->AddExtension("SPV_KHR_physical_storage_buffer"); } context()->AddCapability(spv::Capability::PhysicalStorageBufferAddresses); Instruction* memory_model = get_module()->GetMemoryModel(); // TODO should this be just Physical64? memory_model->SetInOperand( 0u, {uint32_t(spv::AddressingModel::PhysicalStorageBuffer64)}); analysis::DecorationManager* deco_mgr = get_decoration_mgr(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); constexpr uint32_t width = 32u; // declare the DescriptorSetData struct analysis::Struct* desc_set_struct = GetStruct({type_mgr->GetUIntType(), GetUintRuntimeArrayType(width)}); desc_set_type_id_ = type_mgr->GetTypeInstruction(desc_set_struct); // By the Vulkan spec, a pre-existing struct containing a RuntimeArray // must be a block, and will therefore be decorated with Block. Therefore // the undecorated type returned here will not be pre-existing and can // safely be decorated. Since this type is now decorated, it is out of // sync with the TypeManager and therefore the TypeManager must be // invalidated after this pass. assert(context()->get_def_use_mgr()->NumUses(desc_set_type_id_) == 0 && "used struct type returned"); deco_mgr->AddDecoration(desc_set_type_id_, uint32_t(spv::Decoration::Block)); deco_mgr->AddMemberDecoration(desc_set_type_id_, 0, uint32_t(spv::Decoration::Offset), 0); deco_mgr->AddMemberDecoration(desc_set_type_id_, 1, uint32_t(spv::Decoration::Offset), 4); context()->AddDebug2Inst( NewGlobalName(desc_set_type_id_, "DescriptorSetData")); context()->AddDebug2Inst(NewMemberName(desc_set_type_id_, 0, "num_bindings")); context()->AddDebug2Inst(NewMemberName(desc_set_type_id_, 1, "data")); // declare buffer address reference to DescriptorSetData desc_set_ptr_id_ = type_mgr->FindPointerToType( desc_set_type_id_, spv::StorageClass::PhysicalStorageBuffer); // runtime array of buffer addresses analysis::Type* rarr_ty = GetArray(type_mgr->GetType(desc_set_ptr_id_), kDebugInputBindlessMaxDescSets); deco_mgr->AddDecorationVal(type_mgr->GetId(rarr_ty), uint32_t(spv::Decoration::ArrayStride), 8u); // declare the InputBuffer type, a struct wrapper around the runtime array analysis::Struct* input_buffer_struct = GetStruct({rarr_ty}); input_buffer_struct_id_ = type_mgr->GetTypeInstruction(input_buffer_struct); deco_mgr->AddDecoration(input_buffer_struct_id_, uint32_t(spv::Decoration::Block)); deco_mgr->AddMemberDecoration(input_buffer_struct_id_, 0, uint32_t(spv::Decoration::Offset), 0); context()->AddDebug2Inst( NewGlobalName(input_buffer_struct_id_, "InputBuffer")); context()->AddDebug2Inst( NewMemberName(input_buffer_struct_id_, 0, "desc_sets")); input_buffer_ptr_id_ = type_mgr->FindPointerToType( input_buffer_struct_id_, spv::StorageClass::StorageBuffer); // declare the input_buffer global variable input_buffer_id_ = TakeNextId(); const std::vector var_operands = { {spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, {uint32_t(spv::StorageClass::StorageBuffer)}}, }; auto new_var_op = spvtools::MakeUnique( context(), spv::Op::OpVariable, input_buffer_ptr_id_, input_buffer_id_, var_operands); context()->AddGlobalValue(std::move(new_var_op)); context()->AddDebug2Inst(NewGlobalName(input_buffer_id_, "input_buffer")); deco_mgr->AddDecorationVal( input_buffer_id_, uint32_t(spv::Decoration::DescriptorSet), desc_set_); deco_mgr->AddDecorationVal(input_buffer_id_, uint32_t(spv::Decoration::Binding), GetInputBufferBinding()); if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) { // Add the new buffer to all entry points. for (auto& entry : get_module()->entry_points()) { entry.AddOperand({SPV_OPERAND_TYPE_ID, {input_buffer_id_}}); context()->AnalyzeUses(&entry); } } } // clang-format off // GLSL: // uint inst_bindless_read_binding_length(uint desc_set_idx, uint binding_idx) // { // if (desc_set_idx >= inst_bindless_input_buffer.desc_sets.length()) { // return 0; // } // // DescriptorSetData set_data = inst_bindless_input_buffer.desc_sets[desc_set_idx]; // uvec2 ptr_as_vec = uvec2(set_data); // if ((ptr_as_vec.x == 0u) && (_ptr_as_vec.y == 0u)) // { // return 0u; // } // uint num_bindings = set_data.num_bindings; // if (binding_idx >= num_bindings) { // return 0; // } // return set_data.data[binding_idx]; // } // clang-format on uint32_t InstBindlessCheckPass::GenDebugReadLengthFunctionId() { if (read_length_func_id_ != 0) { return read_length_func_id_; } SetupInputBufferIds(); const analysis::Integer* uint_type = GetInteger(32, false); const std::vector param_types(2, uint_type); const uint32_t func_id = TakeNextId(); std::unique_ptr func = StartFunction(func_id, uint_type, param_types); const std::vector param_ids = AddParameters(*func, param_types); // Create block auto new_blk_ptr = MakeUnique(NewLabel(TakeNextId())); InstructionBuilder builder( context(), new_blk_ptr.get(), IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); Instruction* inst; inst = builder.AddBinaryOp( GetBoolId(), spv::Op::OpUGreaterThanEqual, param_ids[0], builder.GetUintConstantId(kDebugInputBindlessMaxDescSets)); const uint32_t desc_cmp_id = inst->result_id(); uint32_t error_blk_id = TakeNextId(); uint32_t merge_blk_id = TakeNextId(); std::unique_ptr merge_label(NewLabel(merge_blk_id)); std::unique_ptr error_label(NewLabel(error_blk_id)); (void)builder.AddConditionalBranch(desc_cmp_id, error_blk_id, merge_blk_id, merge_blk_id); func->AddBasicBlock(std::move(new_blk_ptr)); // error return new_blk_ptr = MakeUnique(std::move(error_label)); builder.SetInsertPoint(&*new_blk_ptr); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, builder.GetUintConstantId(0)); func->AddBasicBlock(std::move(new_blk_ptr)); // check descriptor set table entry is non-null new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); analysis::TypeManager* type_mgr = context()->get_type_mgr(); const uint32_t desc_set_ptr_ptr = type_mgr->FindPointerToType( desc_set_ptr_id_, spv::StorageClass::StorageBuffer); inst = builder.AddAccessChain(desc_set_ptr_ptr, input_buffer_id_, {builder.GetUintConstantId(0), param_ids[0]}); const uint32_t set_access_chain_id = inst->result_id(); inst = builder.AddLoad(desc_set_ptr_id_, set_access_chain_id); const uint32_t desc_set_ptr_id = inst->result_id(); inst = builder.AddUnaryOp(GetVecUintId(2), spv::Op::OpBitcast, desc_set_ptr_id); const uint32_t ptr_as_uvec_id = inst->result_id(); inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {0}); const uint32_t uvec_x = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_x, builder.GetUintConstantId(0)); const uint32_t x_is_zero_id = inst->result_id(); inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {1}); const uint32_t uvec_y = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_y, builder.GetUintConstantId(0)); const uint32_t y_is_zero_id = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpLogicalAnd, x_is_zero_id, y_is_zero_id); const uint32_t is_null_id = inst->result_id(); error_blk_id = TakeNextId(); merge_blk_id = TakeNextId(); merge_label = NewLabel(merge_blk_id); error_label = NewLabel(error_blk_id); (void)builder.AddConditionalBranch(is_null_id, error_blk_id, merge_blk_id, merge_blk_id); func->AddBasicBlock(std::move(new_blk_ptr)); // error return new_blk_ptr = MakeUnique(std::move(error_label)); builder.SetInsertPoint(&*new_blk_ptr); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, builder.GetUintConstantId(0)); func->AddBasicBlock(std::move(new_blk_ptr)); // check binding is in range new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); const uint32_t uint_ptr = type_mgr->FindPointerToType( GetUintId(), spv::StorageClass::PhysicalStorageBuffer); inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id, {builder.GetUintConstantId(0)}); const uint32_t binding_access_chain_id = inst->result_id(); inst = builder.AddLoad(GetUintId(), binding_access_chain_id, 8); const uint32_t num_bindings_id = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpUGreaterThanEqual, param_ids[1], num_bindings_id); const uint32_t bindings_cmp_id = inst->result_id(); error_blk_id = TakeNextId(); merge_blk_id = TakeNextId(); merge_label = NewLabel(merge_blk_id); error_label = NewLabel(error_blk_id); (void)builder.AddConditionalBranch(bindings_cmp_id, error_blk_id, merge_blk_id, merge_blk_id); func->AddBasicBlock(std::move(new_blk_ptr)); // error return new_blk_ptr = MakeUnique(std::move(error_label)); builder.SetInsertPoint(&*new_blk_ptr); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, builder.GetUintConstantId(0)); func->AddBasicBlock(std::move(new_blk_ptr)); // read binding length new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id, {{builder.GetUintConstantId(1), param_ids[1]}}); const uint32_t length_ac_id = inst->result_id(); inst = builder.AddLoad(GetUintId(), length_ac_id, sizeof(uint32_t)); const uint32_t length_id = inst->result_id(); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, length_id); func->AddBasicBlock(std::move(new_blk_ptr)); func->SetFunctionEnd(EndFunction()); context()->AddFunction(std::move(func)); context()->AddDebug2Inst(NewGlobalName(func_id, "read_binding_length")); read_length_func_id_ = func_id; // Make sure this function doesn't get processed by // InstrumentPass::InstProcessCallTreeFromRoots() param2output_func_id_[2] = func_id; return read_length_func_id_; } // clang-format off // GLSL: // result = inst_bindless_read_binding_length(desc_set_id, binding_id); // clang-format on uint32_t InstBindlessCheckPass::GenDebugReadLength( uint32_t var_id, InstructionBuilder* builder) { const uint32_t func_id = GenDebugReadLengthFunctionId(); const std::vector args = { builder->GetUintConstantId(var2desc_set_[var_id]), builder->GetUintConstantId(var2binding_[var_id]), }; return GenReadFunctionCall(func_id, args, builder); } // clang-format off // GLSL: // uint inst_bindless_read_desc_init(uint desc_set_idx, uint binding_idx, uint desc_idx) // { // if (desc_set_idx >= uint(inst_bindless_input_buffer.desc_sets.length())) // { // return 0u; // } // DescriptorSetData set_data = inst_bindless_input_buffer.desc_sets[desc_set_idx]; // uvec2 ptr_as_vec = uvec2(set_data) // if ((ptr_as_vec .x == 0u) && (ptr_as_vec.y == 0u)) // { // return 0u; // } // if (binding_idx >= set_data.num_bindings) // { // return 0u; // } // if (desc_idx >= set_data.data[binding_idx]) // { // return 0u; // } // uint desc_records_start = set_data.data[set_data.num_bindings + binding_idx]; // return set_data.data[desc_records_start + desc_idx]; // } // clang-format on uint32_t InstBindlessCheckPass::GenDebugReadInitFunctionId() { if (read_init_func_id_ != 0) { return read_init_func_id_; } SetupInputBufferIds(); const analysis::Integer* uint_type = GetInteger(32, false); const std::vector param_types(3, uint_type); const uint32_t func_id = TakeNextId(); std::unique_ptr func = StartFunction(func_id, uint_type, param_types); const std::vector param_ids = AddParameters(*func, param_types); // Create block auto new_blk_ptr = MakeUnique(NewLabel(TakeNextId())); InstructionBuilder builder( context(), new_blk_ptr.get(), IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); Instruction* inst; inst = builder.AddBinaryOp( GetBoolId(), spv::Op::OpUGreaterThanEqual, param_ids[0], builder.GetUintConstantId(kDebugInputBindlessMaxDescSets)); const uint32_t desc_cmp_id = inst->result_id(); uint32_t error_blk_id = TakeNextId(); uint32_t merge_blk_id = TakeNextId(); std::unique_ptr merge_label(NewLabel(merge_blk_id)); std::unique_ptr error_label(NewLabel(error_blk_id)); (void)builder.AddConditionalBranch(desc_cmp_id, error_blk_id, merge_blk_id, merge_blk_id); func->AddBasicBlock(std::move(new_blk_ptr)); // error return new_blk_ptr = MakeUnique(std::move(error_label)); builder.SetInsertPoint(&*new_blk_ptr); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, builder.GetUintConstantId(0)); func->AddBasicBlock(std::move(new_blk_ptr)); // check descriptor set table entry is non-null new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); analysis::TypeManager* type_mgr = context()->get_type_mgr(); const uint32_t desc_set_ptr_ptr = type_mgr->FindPointerToType( desc_set_ptr_id_, spv::StorageClass::StorageBuffer); inst = builder.AddAccessChain(desc_set_ptr_ptr, input_buffer_id_, {builder.GetUintConstantId(0), param_ids[0]}); const uint32_t set_access_chain_id = inst->result_id(); inst = builder.AddLoad(desc_set_ptr_id_, set_access_chain_id); const uint32_t desc_set_ptr_id = inst->result_id(); inst = builder.AddUnaryOp(GetVecUintId(2), spv::Op::OpBitcast, desc_set_ptr_id); const uint32_t ptr_as_uvec_id = inst->result_id(); inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {0}); const uint32_t uvec_x = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_x, builder.GetUintConstantId(0)); const uint32_t x_is_zero_id = inst->result_id(); inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {1}); const uint32_t uvec_y = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_y, builder.GetUintConstantId(0)); const uint32_t y_is_zero_id = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpLogicalAnd, x_is_zero_id, y_is_zero_id); const uint32_t is_null_id = inst->result_id(); error_blk_id = TakeNextId(); merge_blk_id = TakeNextId(); merge_label = NewLabel(merge_blk_id); error_label = NewLabel(error_blk_id); (void)builder.AddConditionalBranch(is_null_id, error_blk_id, merge_blk_id, merge_blk_id); func->AddBasicBlock(std::move(new_blk_ptr)); // error return new_blk_ptr = MakeUnique(std::move(error_label)); builder.SetInsertPoint(&*new_blk_ptr); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, builder.GetUintConstantId(0)); func->AddBasicBlock(std::move(new_blk_ptr)); // check binding is in range new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); const uint32_t uint_ptr = type_mgr->FindPointerToType( GetUintId(), spv::StorageClass::PhysicalStorageBuffer); inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id, {builder.GetUintConstantId(0)}); const uint32_t binding_access_chain_id = inst->result_id(); inst = builder.AddLoad(GetUintId(), binding_access_chain_id, 8); const uint32_t num_bindings_id = inst->result_id(); inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpUGreaterThanEqual, param_ids[1], num_bindings_id); const uint32_t bindings_cmp_id = inst->result_id(); error_blk_id = TakeNextId(); merge_blk_id = TakeNextId(); merge_label = NewLabel(merge_blk_id); error_label = NewLabel(error_blk_id); (void)builder.AddConditionalBranch(bindings_cmp_id, error_blk_id, merge_blk_id, merge_blk_id); func->AddBasicBlock(std::move(new_blk_ptr)); // error return new_blk_ptr = MakeUnique(std::move(error_label)); builder.SetInsertPoint(&*new_blk_ptr); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, builder.GetUintConstantId(0)); func->AddBasicBlock(std::move(new_blk_ptr)); // read binding length new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id, {{builder.GetUintConstantId(1), param_ids[1]}}); const uint32_t length_ac_id = inst->result_id(); inst = builder.AddLoad(GetUintId(), length_ac_id, sizeof(uint32_t)); const uint32_t length_id = inst->result_id(); // Check descriptor index in bounds inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpUGreaterThanEqual, param_ids[2], length_id); const uint32_t desc_idx_range_id = inst->result_id(); error_blk_id = TakeNextId(); merge_blk_id = TakeNextId(); merge_label = NewLabel(merge_blk_id); error_label = NewLabel(error_blk_id); (void)builder.AddConditionalBranch(desc_idx_range_id, error_blk_id, merge_blk_id, merge_blk_id); func->AddBasicBlock(std::move(new_blk_ptr)); // Error return new_blk_ptr = MakeUnique(std::move(error_label)); builder.SetInsertPoint(&*new_blk_ptr); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, builder.GetUintConstantId(0)); func->AddBasicBlock(std::move(new_blk_ptr)); // Read descriptor init status new_blk_ptr = MakeUnique(std::move(merge_label)); builder.SetInsertPoint(&*new_blk_ptr); inst = builder.AddIAdd(GetUintId(), num_bindings_id, param_ids[1]); const uint32_t state_offset_id = inst->result_id(); inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id, {{builder.GetUintConstantId(1), state_offset_id}}); const uint32_t state_start_ac_id = inst->result_id(); inst = builder.AddLoad(GetUintId(), state_start_ac_id, sizeof(uint32_t)); const uint32_t state_start_id = inst->result_id(); inst = builder.AddIAdd(GetUintId(), state_start_id, param_ids[2]); const uint32_t state_entry_id = inst->result_id(); // Note: length starts from the beginning of the buffer, not the beginning of // the data array inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id, {{builder.GetUintConstantId(1), state_entry_id}}); const uint32_t init_ac_id = inst->result_id(); inst = builder.AddLoad(GetUintId(), init_ac_id, sizeof(uint32_t)); const uint32_t init_status_id = inst->result_id(); (void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, init_status_id); func->AddBasicBlock(std::move(new_blk_ptr)); func->SetFunctionEnd(EndFunction()); context()->AddFunction(std::move(func)); context()->AddDebug2Inst(NewGlobalName(func_id, "read_desc_init")); read_init_func_id_ = func_id; // Make sure function doesn't get processed by // InstrumentPass::InstProcessCallTreeFromRoots() param2output_func_id_[3] = func_id; return read_init_func_id_; } // clang-format off // GLSL: // result = inst_bindless_read_desc_init(desc_set_id, binding_id, desc_idx_id); // // clang-format on uint32_t InstBindlessCheckPass::GenDebugReadInit(uint32_t var_id, uint32_t desc_idx_id, InstructionBuilder* builder) { const uint32_t func_id = GenDebugReadInitFunctionId(); const std::vector args = { builder->GetUintConstantId(var2desc_set_[var_id]), builder->GetUintConstantId(var2binding_[var_id]), GenUintCastCode(desc_idx_id, builder)}; return GenReadFunctionCall(func_id, args, builder); } uint32_t InstBindlessCheckPass::CloneOriginalImage( uint32_t old_image_id, InstructionBuilder* builder) { Instruction* new_image_inst; Instruction* old_image_inst = get_def_use_mgr()->GetDef(old_image_id); if (old_image_inst->opcode() == spv::Op::OpLoad) { new_image_inst = builder->AddLoad( old_image_inst->type_id(), old_image_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx)); } else if (old_image_inst->opcode() == spv::Op::OpSampledImage) { uint32_t clone_id = CloneOriginalImage( old_image_inst->GetSingleWordInOperand(kSpvSampledImageImageIdInIdx), builder); new_image_inst = builder->AddBinaryOp( old_image_inst->type_id(), spv::Op::OpSampledImage, clone_id, old_image_inst->GetSingleWordInOperand(kSpvSampledImageSamplerIdInIdx)); } else if (old_image_inst->opcode() == spv::Op::OpImage) { uint32_t clone_id = CloneOriginalImage( old_image_inst->GetSingleWordInOperand(kSpvImageSampledImageIdInIdx), builder); new_image_inst = builder->AddUnaryOp(old_image_inst->type_id(), spv::Op::OpImage, clone_id); } else { assert(old_image_inst->opcode() == spv::Op::OpCopyObject && "expecting OpCopyObject"); uint32_t clone_id = CloneOriginalImage( old_image_inst->GetSingleWordInOperand(kSpvCopyObjectOperandIdInIdx), builder); // Since we are cloning, no need to create new copy new_image_inst = get_def_use_mgr()->GetDef(clone_id); } uid2offset_[new_image_inst->unique_id()] = uid2offset_[old_image_inst->unique_id()]; uint32_t new_image_id = new_image_inst->result_id(); get_decoration_mgr()->CloneDecorations(old_image_id, new_image_id); return new_image_id; } uint32_t InstBindlessCheckPass::CloneOriginalReference( RefAnalysis* ref, InstructionBuilder* builder) { // If original is image based, start by cloning descriptor load uint32_t new_image_id = 0; if (ref->desc_load_id != 0) { uint32_t old_image_id = ref->ref_inst->GetSingleWordInOperand(kSpvImageSampleImageIdInIdx); new_image_id = CloneOriginalImage(old_image_id, builder); } // Clone original reference std::unique_ptr new_ref_inst(ref->ref_inst->Clone(context())); uint32_t ref_result_id = ref->ref_inst->result_id(); uint32_t new_ref_id = 0; if (ref_result_id != 0) { new_ref_id = TakeNextId(); new_ref_inst->SetResultId(new_ref_id); } // Update new ref with new image if created if (new_image_id != 0) new_ref_inst->SetInOperand(kSpvImageSampleImageIdInIdx, {new_image_id}); // Register new reference and add to new block Instruction* added_inst = builder->AddInstruction(std::move(new_ref_inst)); uid2offset_[added_inst->unique_id()] = uid2offset_[ref->ref_inst->unique_id()]; if (new_ref_id != 0) get_decoration_mgr()->CloneDecorations(ref_result_id, new_ref_id); return new_ref_id; } uint32_t InstBindlessCheckPass::GetImageId(Instruction* inst) { switch (inst->opcode()) { case spv::Op::OpImageSampleImplicitLod: case spv::Op::OpImageSampleExplicitLod: case spv::Op::OpImageSampleDrefImplicitLod: case spv::Op::OpImageSampleDrefExplicitLod: case spv::Op::OpImageSampleProjImplicitLod: case spv::Op::OpImageSampleProjExplicitLod: case spv::Op::OpImageSampleProjDrefImplicitLod: case spv::Op::OpImageSampleProjDrefExplicitLod: case spv::Op::OpImageGather: case spv::Op::OpImageDrefGather: case spv::Op::OpImageQueryLod: case spv::Op::OpImageSparseSampleImplicitLod: case spv::Op::OpImageSparseSampleExplicitLod: case spv::Op::OpImageSparseSampleDrefImplicitLod: case spv::Op::OpImageSparseSampleDrefExplicitLod: case spv::Op::OpImageSparseSampleProjImplicitLod: case spv::Op::OpImageSparseSampleProjExplicitLod: case spv::Op::OpImageSparseSampleProjDrefImplicitLod: case spv::Op::OpImageSparseSampleProjDrefExplicitLod: case spv::Op::OpImageSparseGather: case spv::Op::OpImageSparseDrefGather: case spv::Op::OpImageFetch: case spv::Op::OpImageRead: case spv::Op::OpImageQueryFormat: case spv::Op::OpImageQueryOrder: case spv::Op::OpImageQuerySizeLod: case spv::Op::OpImageQuerySize: case spv::Op::OpImageQueryLevels: case spv::Op::OpImageQuerySamples: case spv::Op::OpImageSparseFetch: case spv::Op::OpImageSparseRead: case spv::Op::OpImageWrite: return inst->GetSingleWordInOperand(kSpvImageSampleImageIdInIdx); default: break; } return 0; } Instruction* InstBindlessCheckPass::GetPointeeTypeInst(Instruction* ptr_inst) { uint32_t pte_ty_id = GetPointeeTypeId(ptr_inst); return get_def_use_mgr()->GetDef(pte_ty_id); } bool InstBindlessCheckPass::AnalyzeDescriptorReference(Instruction* ref_inst, RefAnalysis* ref) { ref->ref_inst = ref_inst; if (ref_inst->opcode() == spv::Op::OpLoad || ref_inst->opcode() == spv::Op::OpStore) { ref->desc_load_id = 0; ref->ptr_id = ref_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx); Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref->ptr_id); if (ptr_inst->opcode() != spv::Op::OpAccessChain) return false; ref->var_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainBaseIdInIdx); Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id); if (var_inst->opcode() != spv::Op::OpVariable) return false; spv::StorageClass storage_class = spv::StorageClass( var_inst->GetSingleWordInOperand(kSpvVariableStorageClassInIdx)); switch (storage_class) { case spv::StorageClass::Uniform: case spv::StorageClass::StorageBuffer: break; default: return false; break; } // Check for deprecated storage block form if (storage_class == spv::StorageClass::Uniform) { uint32_t var_ty_id = var_inst->type_id(); Instruction* var_ty_inst = get_def_use_mgr()->GetDef(var_ty_id); uint32_t ptr_ty_id = var_ty_inst->GetSingleWordInOperand(kSpvTypePtrTypeIdInIdx); Instruction* ptr_ty_inst = get_def_use_mgr()->GetDef(ptr_ty_id); spv::Op ptr_ty_op = ptr_ty_inst->opcode(); uint32_t block_ty_id = (ptr_ty_op == spv::Op::OpTypeArray || ptr_ty_op == spv::Op::OpTypeRuntimeArray) ? ptr_ty_inst->GetSingleWordInOperand(kSpvTypeArrayTypeIdInIdx) : ptr_ty_id; assert(get_def_use_mgr()->GetDef(block_ty_id)->opcode() == spv::Op::OpTypeStruct && "unexpected block type"); bool block_found = get_decoration_mgr()->FindDecoration( block_ty_id, uint32_t(spv::Decoration::Block), [](const Instruction&) { return true; }); if (!block_found) { // If block decoration not found, verify deprecated form of SSBO bool buffer_block_found = get_decoration_mgr()->FindDecoration( block_ty_id, uint32_t(spv::Decoration::BufferBlock), [](const Instruction&) { return true; }); USE_ASSERT(buffer_block_found && "block decoration not found"); storage_class = spv::StorageClass::StorageBuffer; } } ref->strg_class = uint32_t(storage_class); Instruction* desc_type_inst = GetPointeeTypeInst(var_inst); switch (desc_type_inst->opcode()) { case spv::Op::OpTypeArray: case spv::Op::OpTypeRuntimeArray: // A load through a descriptor array will have at least 3 operands. We // do not want to instrument loads of descriptors here which are part of // an image-based reference. if (ptr_inst->NumInOperands() < 3) return false; ref->desc_idx_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainIndex0IdInIdx); break; default: break; } auto decos = context()->get_decoration_mgr()->GetDecorationsFor(ref->var_id, false); for (const auto& deco : decos) { spv::Decoration d = spv::Decoration(deco->GetSingleWordInOperand(1u)); if (d == spv::Decoration::DescriptorSet) { ref->set = deco->GetSingleWordInOperand(2u); } else if (d == spv::Decoration::Binding) { ref->binding = deco->GetSingleWordInOperand(2u); } } return true; } // Reference is not load or store. If not an image-based reference, return. ref->image_id = GetImageId(ref_inst); if (ref->image_id == 0) return false; // Search for descriptor load uint32_t desc_load_id = ref->image_id; Instruction* desc_load_inst; for (;;) { desc_load_inst = get_def_use_mgr()->GetDef(desc_load_id); if (desc_load_inst->opcode() == spv::Op::OpSampledImage) desc_load_id = desc_load_inst->GetSingleWordInOperand(kSpvSampledImageImageIdInIdx); else if (desc_load_inst->opcode() == spv::Op::OpImage) desc_load_id = desc_load_inst->GetSingleWordInOperand(kSpvImageSampledImageIdInIdx); else if (desc_load_inst->opcode() == spv::Op::OpCopyObject) desc_load_id = desc_load_inst->GetSingleWordInOperand(kSpvCopyObjectOperandIdInIdx); else break; } if (desc_load_inst->opcode() != spv::Op::OpLoad) { // TODO(greg-lunarg): Handle additional possibilities? return false; } ref->desc_load_id = desc_load_id; ref->ptr_id = desc_load_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx); Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref->ptr_id); if (ptr_inst->opcode() == spv::Op::OpVariable) { ref->desc_idx_id = 0; ref->var_id = ref->ptr_id; } else if (ptr_inst->opcode() == spv::Op::OpAccessChain) { if (ptr_inst->NumInOperands() != 2) { assert(false && "unexpected bindless index number"); return false; } ref->desc_idx_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainIndex0IdInIdx); ref->var_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainBaseIdInIdx); Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id); if (var_inst->opcode() != spv::Op::OpVariable) { assert(false && "unexpected bindless base"); return false; } } else { // TODO(greg-lunarg): Handle additional possibilities? return false; } auto decos = context()->get_decoration_mgr()->GetDecorationsFor(ref->var_id, false); for (const auto& deco : decos) { spv::Decoration d = spv::Decoration(deco->GetSingleWordInOperand(1u)); if (d == spv::Decoration::DescriptorSet) { ref->set = deco->GetSingleWordInOperand(2u); } else if (d == spv::Decoration::Binding) { ref->binding = deco->GetSingleWordInOperand(2u); } } return true; } uint32_t InstBindlessCheckPass::FindStride(uint32_t ty_id, uint32_t stride_deco) { uint32_t stride = 0xdeadbeef; bool found = get_decoration_mgr()->FindDecoration( ty_id, stride_deco, [&stride](const Instruction& deco_inst) { stride = deco_inst.GetSingleWordInOperand(2u); return true; }); USE_ASSERT(found && "stride not found"); return stride; } uint32_t InstBindlessCheckPass::ByteSize(uint32_t ty_id, uint32_t matrix_stride, bool col_major, bool in_matrix) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); const analysis::Type* sz_ty = type_mgr->GetType(ty_id); if (sz_ty->kind() == analysis::Type::kPointer) { // Assuming PhysicalStorageBuffer pointer return 8; } if (sz_ty->kind() == analysis::Type::kMatrix) { assert(matrix_stride != 0 && "missing matrix stride"); const analysis::Matrix* m_ty = sz_ty->AsMatrix(); if (col_major) { return m_ty->element_count() * matrix_stride; } else { const analysis::Vector* v_ty = m_ty->element_type()->AsVector(); return v_ty->element_count() * matrix_stride; } } uint32_t size = 1; if (sz_ty->kind() == analysis::Type::kVector) { const analysis::Vector* v_ty = sz_ty->AsVector(); size = v_ty->element_count(); const analysis::Type* comp_ty = v_ty->element_type(); // if vector in row major matrix, the vector is strided so return the // number of bytes spanned by the vector if (in_matrix && !col_major && matrix_stride > 0) { uint32_t comp_ty_id = type_mgr->GetId(comp_ty); return (size - 1) * matrix_stride + ByteSize(comp_ty_id, 0, false, false); } sz_ty = comp_ty; } switch (sz_ty->kind()) { case analysis::Type::kFloat: { const analysis::Float* f_ty = sz_ty->AsFloat(); size *= f_ty->width(); } break; case analysis::Type::kInteger: { const analysis::Integer* i_ty = sz_ty->AsInteger(); size *= i_ty->width(); } break; default: { assert(false && "unexpected type"); } break; } size /= 8; return size; } uint32_t InstBindlessCheckPass::GenLastByteIdx(RefAnalysis* ref, InstructionBuilder* builder) { // Find outermost buffer type and its access chain index Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id); Instruction* desc_ty_inst = GetPointeeTypeInst(var_inst); uint32_t buff_ty_id; uint32_t ac_in_idx = 1; switch (desc_ty_inst->opcode()) { case spv::Op::OpTypeArray: case spv::Op::OpTypeRuntimeArray: buff_ty_id = desc_ty_inst->GetSingleWordInOperand(0); ++ac_in_idx; break; default: assert(desc_ty_inst->opcode() == spv::Op::OpTypeStruct && "unexpected descriptor type"); buff_ty_id = desc_ty_inst->result_id(); break; } // Process remaining access chain indices Instruction* ac_inst = get_def_use_mgr()->GetDef(ref->ptr_id); uint32_t curr_ty_id = buff_ty_id; uint32_t sum_id = 0u; uint32_t matrix_stride = 0u; bool col_major = false; uint32_t matrix_stride_id = 0u; bool in_matrix = false; while (ac_in_idx < ac_inst->NumInOperands()) { uint32_t curr_idx_id = ac_inst->GetSingleWordInOperand(ac_in_idx); Instruction* curr_ty_inst = get_def_use_mgr()->GetDef(curr_ty_id); uint32_t curr_offset_id = 0; switch (curr_ty_inst->opcode()) { case spv::Op::OpTypeArray: case spv::Op::OpTypeRuntimeArray: { // Get array stride and multiply by current index uint32_t arr_stride = FindStride(curr_ty_id, uint32_t(spv::Decoration::ArrayStride)); uint32_t arr_stride_id = builder->GetUintConstantId(arr_stride); uint32_t curr_idx_32b_id = Gen32BitCvtCode(curr_idx_id, builder); Instruction* curr_offset_inst = builder->AddBinaryOp( GetUintId(), spv::Op::OpIMul, arr_stride_id, curr_idx_32b_id); curr_offset_id = curr_offset_inst->result_id(); // Get element type for next step curr_ty_id = curr_ty_inst->GetSingleWordInOperand(0); } break; case spv::Op::OpTypeMatrix: { assert(matrix_stride != 0 && "missing matrix stride"); matrix_stride_id = builder->GetUintConstantId(matrix_stride); uint32_t vec_ty_id = curr_ty_inst->GetSingleWordInOperand(0); // If column major, multiply column index by matrix stride, otherwise // by vector component size and save matrix stride for vector (row) // index uint32_t col_stride_id; if (col_major) { col_stride_id = matrix_stride_id; } else { Instruction* vec_ty_inst = get_def_use_mgr()->GetDef(vec_ty_id); uint32_t comp_ty_id = vec_ty_inst->GetSingleWordInOperand(0u); uint32_t col_stride = ByteSize(comp_ty_id, 0u, false, false); col_stride_id = builder->GetUintConstantId(col_stride); } uint32_t curr_idx_32b_id = Gen32BitCvtCode(curr_idx_id, builder); Instruction* curr_offset_inst = builder->AddBinaryOp( GetUintId(), spv::Op::OpIMul, col_stride_id, curr_idx_32b_id); curr_offset_id = curr_offset_inst->result_id(); // Get element type for next step curr_ty_id = vec_ty_id; in_matrix = true; } break; case spv::Op::OpTypeVector: { // If inside a row major matrix type, multiply index by matrix stride, // else multiply by component size uint32_t comp_ty_id = curr_ty_inst->GetSingleWordInOperand(0u); uint32_t curr_idx_32b_id = Gen32BitCvtCode(curr_idx_id, builder); if (in_matrix && !col_major) { Instruction* curr_offset_inst = builder->AddBinaryOp( GetUintId(), spv::Op::OpIMul, matrix_stride_id, curr_idx_32b_id); curr_offset_id = curr_offset_inst->result_id(); } else { uint32_t comp_ty_sz = ByteSize(comp_ty_id, 0u, false, false); uint32_t comp_ty_sz_id = builder->GetUintConstantId(comp_ty_sz); Instruction* curr_offset_inst = builder->AddBinaryOp( GetUintId(), spv::Op::OpIMul, comp_ty_sz_id, curr_idx_32b_id); curr_offset_id = curr_offset_inst->result_id(); } // Get element type for next step curr_ty_id = comp_ty_id; } break; case spv::Op::OpTypeStruct: { // Get buffer byte offset for the referenced member Instruction* curr_idx_inst = get_def_use_mgr()->GetDef(curr_idx_id); assert(curr_idx_inst->opcode() == spv::Op::OpConstant && "unexpected struct index"); uint32_t member_idx = curr_idx_inst->GetSingleWordInOperand(0); uint32_t member_offset = 0xdeadbeef; bool found = get_decoration_mgr()->FindDecoration( curr_ty_id, uint32_t(spv::Decoration::Offset), [&member_idx, &member_offset](const Instruction& deco_inst) { if (deco_inst.GetSingleWordInOperand(1u) != member_idx) return false; member_offset = deco_inst.GetSingleWordInOperand(3u); return true; }); USE_ASSERT(found && "member offset not found"); curr_offset_id = builder->GetUintConstantId(member_offset); // Look for matrix stride for this member if there is one. The matrix // stride is not on the matrix type, but in a OpMemberDecorate on the // enclosing struct type at the member index. If none found, reset // stride to 0. found = get_decoration_mgr()->FindDecoration( curr_ty_id, uint32_t(spv::Decoration::MatrixStride), [&member_idx, &matrix_stride](const Instruction& deco_inst) { if (deco_inst.GetSingleWordInOperand(1u) != member_idx) return false; matrix_stride = deco_inst.GetSingleWordInOperand(3u); return true; }); if (!found) matrix_stride = 0; // Look for column major decoration found = get_decoration_mgr()->FindDecoration( curr_ty_id, uint32_t(spv::Decoration::ColMajor), [&member_idx, &col_major](const Instruction& deco_inst) { if (deco_inst.GetSingleWordInOperand(1u) != member_idx) return false; col_major = true; return true; }); if (!found) col_major = false; // Get element type for next step curr_ty_id = curr_ty_inst->GetSingleWordInOperand(member_idx); } break; default: { assert(false && "unexpected non-composite type"); } break; } if (sum_id == 0) sum_id = curr_offset_id; else { Instruction* sum_inst = builder->AddIAdd(GetUintId(), sum_id, curr_offset_id); sum_id = sum_inst->result_id(); } ++ac_in_idx; } // Add in offset of last byte of referenced object uint32_t bsize = ByteSize(curr_ty_id, matrix_stride, col_major, in_matrix); uint32_t last = bsize - 1; uint32_t last_id = builder->GetUintConstantId(last); Instruction* sum_inst = builder->AddIAdd(GetUintId(), sum_id, last_id); return sum_inst->result_id(); } void InstBindlessCheckPass::GenCheckCode( uint32_t check_id, uint32_t error_id, uint32_t offset_id, uint32_t length_id, uint32_t stage_idx, RefAnalysis* ref, std::vector>* new_blocks) { BasicBlock* back_blk_ptr = &*new_blocks->back(); InstructionBuilder builder( context(), back_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); // Gen conditional branch on check_id. Valid branch generates original // reference. Invalid generates debug output and zero result (if needed). uint32_t merge_blk_id = TakeNextId(); uint32_t valid_blk_id = TakeNextId(); uint32_t invalid_blk_id = TakeNextId(); std::unique_ptr merge_label(NewLabel(merge_blk_id)); std::unique_ptr valid_label(NewLabel(valid_blk_id)); std::unique_ptr invalid_label(NewLabel(invalid_blk_id)); (void)builder.AddConditionalBranch( check_id, valid_blk_id, invalid_blk_id, merge_blk_id, uint32_t(spv::SelectionControlMask::MaskNone)); // Gen valid bounds branch std::unique_ptr new_blk_ptr( new BasicBlock(std::move(valid_label))); builder.SetInsertPoint(&*new_blk_ptr); uint32_t new_ref_id = CloneOriginalReference(ref, &builder); uint32_t null_id = 0; uint32_t ref_type_id = ref->ref_inst->type_id(); (void)builder.AddBranch(merge_blk_id); new_blocks->push_back(std::move(new_blk_ptr)); // Gen invalid block new_blk_ptr.reset(new BasicBlock(std::move(invalid_label))); builder.SetInsertPoint(&*new_blk_ptr); const uint32_t u_set_id = builder.GetUintConstantId(ref->set); const uint32_t u_binding_id = builder.GetUintConstantId(ref->binding); const uint32_t u_index_id = GenUintCastCode(ref->desc_idx_id, &builder); const uint32_t u_length_id = GenUintCastCode(length_id, &builder); if (offset_id != 0) { const uint32_t u_offset_id = GenUintCastCode(offset_id, &builder); // Buffer OOB GenDebugStreamWrite(uid2offset_[ref->ref_inst->unique_id()], stage_idx, {error_id, u_set_id, u_binding_id, u_index_id, u_offset_id, u_length_id}, &builder); } else if (buffer_bounds_enabled_ || texel_buffer_enabled_) { // Uninitialized Descriptor - Return additional unused zero so all error // modes will use same debug stream write function GenDebugStreamWrite(uid2offset_[ref->ref_inst->unique_id()], stage_idx, {error_id, u_set_id, u_binding_id, u_index_id, u_length_id, builder.GetUintConstantId(0)}, &builder); } else { // Uninitialized Descriptor - Normal error return GenDebugStreamWrite( uid2offset_[ref->ref_inst->unique_id()], stage_idx, {error_id, u_set_id, u_binding_id, u_index_id, u_length_id}, &builder); } // Generate a ConstantNull, converting to uint64 if the type cannot be a null. if (new_ref_id != 0) { analysis::TypeManager* type_mgr = context()->get_type_mgr(); analysis::Type* ref_type = type_mgr->GetType(ref_type_id); if (ref_type->AsPointer() != nullptr) { context()->AddCapability(spv::Capability::Int64); uint32_t null_u64_id = GetNullId(GetUint64Id()); Instruction* null_ptr_inst = builder.AddUnaryOp( ref_type_id, spv::Op::OpConvertUToPtr, null_u64_id); null_id = null_ptr_inst->result_id(); } else { null_id = GetNullId(ref_type_id); } } // Remember last invalid block id uint32_t last_invalid_blk_id = new_blk_ptr->GetLabelInst()->result_id(); // Gen zero for invalid reference (void)builder.AddBranch(merge_blk_id); new_blocks->push_back(std::move(new_blk_ptr)); // Gen merge block new_blk_ptr.reset(new BasicBlock(std::move(merge_label))); builder.SetInsertPoint(&*new_blk_ptr); // Gen phi of new reference and zero, if necessary, and replace the // result id of the original reference with that of the Phi. Kill original // reference. if (new_ref_id != 0) { Instruction* phi_inst = builder.AddPhi( ref_type_id, {new_ref_id, valid_blk_id, null_id, last_invalid_blk_id}); context()->ReplaceAllUsesWith(ref->ref_inst->result_id(), phi_inst->result_id()); } new_blocks->push_back(std::move(new_blk_ptr)); context()->KillInst(ref->ref_inst); } void InstBindlessCheckPass::GenDescIdxCheckCode( BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { // Look for reference through indexed descriptor. If found, analyze and // save components. If not, return. RefAnalysis ref; if (!AnalyzeDescriptorReference(&*ref_inst_itr, &ref)) return; Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref.ptr_id); if (ptr_inst->opcode() != spv::Op::OpAccessChain) return; // If index and bound both compile-time constants and index < bound, // return without changing Instruction* var_inst = get_def_use_mgr()->GetDef(ref.var_id); Instruction* desc_type_inst = GetPointeeTypeInst(var_inst); uint32_t length_id = 0; if (desc_type_inst->opcode() == spv::Op::OpTypeArray) { length_id = desc_type_inst->GetSingleWordInOperand(kSpvTypeArrayLengthIdInIdx); Instruction* index_inst = get_def_use_mgr()->GetDef(ref.desc_idx_id); Instruction* length_inst = get_def_use_mgr()->GetDef(length_id); if (index_inst->opcode() == spv::Op::OpConstant && length_inst->opcode() == spv::Op::OpConstant && index_inst->GetSingleWordInOperand(kSpvConstantValueInIdx) < length_inst->GetSingleWordInOperand(kSpvConstantValueInIdx)) return; } else if (!desc_idx_enabled_ || desc_type_inst->opcode() != spv::Op::OpTypeRuntimeArray) { return; } // Move original block's preceding instructions into first new block std::unique_ptr new_blk_ptr; MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr); InstructionBuilder builder( context(), &*new_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); new_blocks->push_back(std::move(new_blk_ptr)); uint32_t error_id = builder.GetUintConstantId(kInstErrorBindlessBounds); // If length id not yet set, descriptor array is runtime size so // generate load of length from stage's debug input buffer. if (length_id == 0) { assert(desc_type_inst->opcode() == spv::Op::OpTypeRuntimeArray && "unexpected bindless type"); length_id = GenDebugReadLength(ref.var_id, &builder); } // Generate full runtime bounds test code with true branch // being full reference and false branch being debug output and zero // for the referenced value. uint32_t desc_idx_32b_id = Gen32BitCvtCode(ref.desc_idx_id, &builder); uint32_t length_32b_id = Gen32BitCvtCode(length_id, &builder); Instruction* ult_inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpULessThan, desc_idx_32b_id, length_32b_id); ref.desc_idx_id = desc_idx_32b_id; GenCheckCode(ult_inst->result_id(), error_id, 0u, length_id, stage_idx, &ref, new_blocks); // Move original block's remaining code into remainder/merge block and add // to new blocks BasicBlock* back_blk_ptr = &*new_blocks->back(); MovePostludeCode(ref_block_itr, back_blk_ptr); } void InstBindlessCheckPass::GenDescInitCheckCode( BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { // Look for reference through descriptor. If not, return. RefAnalysis ref; if (!AnalyzeDescriptorReference(&*ref_inst_itr, &ref)) return; // Determine if we can only do initialization check bool init_check = false; if (ref.desc_load_id != 0 || !buffer_bounds_enabled_) { init_check = true; } else { // For now, only do bounds check for non-aggregate types. Otherwise // just do descriptor initialization check. // TODO(greg-lunarg): Do bounds check for aggregate loads and stores Instruction* ref_ptr_inst = get_def_use_mgr()->GetDef(ref.ptr_id); Instruction* pte_type_inst = GetPointeeTypeInst(ref_ptr_inst); spv::Op pte_type_op = pte_type_inst->opcode(); if (pte_type_op == spv::Op::OpTypeArray || pte_type_op == spv::Op::OpTypeRuntimeArray || pte_type_op == spv::Op::OpTypeStruct) init_check = true; } // If initialization check and not enabled, return if (init_check && !desc_init_enabled_) return; // Move original block's preceding instructions into first new block std::unique_ptr new_blk_ptr; MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr); InstructionBuilder builder( context(), &*new_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); new_blocks->push_back(std::move(new_blk_ptr)); // If initialization check, use reference value of zero. // Else use the index of the last byte referenced. uint32_t ref_id = init_check ? builder.GetUintConstantId(0u) : GenLastByteIdx(&ref, &builder); // Read initialization/bounds from debug input buffer. If index id not yet // set, binding is single descriptor, so set index to constant 0. if (ref.desc_idx_id == 0) ref.desc_idx_id = builder.GetUintConstantId(0u); uint32_t init_id = GenDebugReadInit(ref.var_id, ref.desc_idx_id, &builder); // Generate runtime initialization/bounds test code with true branch // being full reference and false branch being debug output and zero // for the referenced value. Instruction* ult_inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpULessThan, ref_id, init_id); uint32_t error = init_check ? kInstErrorBindlessUninit : (spv::StorageClass(ref.strg_class) == spv::StorageClass::Uniform ? kInstErrorBuffOOBUniform : kInstErrorBuffOOBStorage); uint32_t error_id = builder.GetUintConstantId(error); GenCheckCode(ult_inst->result_id(), error_id, init_check ? 0 : ref_id, init_check ? builder.GetUintConstantId(0u) : init_id, stage_idx, &ref, new_blocks); // Move original block's remaining code into remainder/merge block and add // to new blocks BasicBlock* back_blk_ptr = &*new_blocks->back(); MovePostludeCode(ref_block_itr, back_blk_ptr); } void InstBindlessCheckPass::GenTexBuffCheckCode( BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { // Only process OpImageRead and OpImageWrite with no optional operands Instruction* ref_inst = &*ref_inst_itr; spv::Op op = ref_inst->opcode(); uint32_t num_in_oprnds = ref_inst->NumInOperands(); if (!((op == spv::Op::OpImageRead && num_in_oprnds == 2) || (op == spv::Op::OpImageFetch && num_in_oprnds == 2) || (op == spv::Op::OpImageWrite && num_in_oprnds == 3))) return; // Pull components from descriptor reference RefAnalysis ref; if (!AnalyzeDescriptorReference(ref_inst, &ref)) return; // Only process if image is texel buffer Instruction* image_inst = get_def_use_mgr()->GetDef(ref.image_id); uint32_t image_ty_id = image_inst->type_id(); Instruction* image_ty_inst = get_def_use_mgr()->GetDef(image_ty_id); if (spv::Dim(image_ty_inst->GetSingleWordInOperand(kSpvTypeImageDim)) != spv::Dim::Buffer) { return; } if (image_ty_inst->GetSingleWordInOperand(kSpvTypeImageDepth) != 0) return; if (image_ty_inst->GetSingleWordInOperand(kSpvTypeImageArrayed) != 0) return; if (image_ty_inst->GetSingleWordInOperand(kSpvTypeImageMS) != 0) return; // Enable ImageQuery Capability if not yet enabled context()->AddCapability(spv::Capability::ImageQuery); // Move original block's preceding instructions into first new block std::unique_ptr new_blk_ptr; MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr); InstructionBuilder builder( context(), &*new_blk_ptr, IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); new_blocks->push_back(std::move(new_blk_ptr)); // Get texel coordinate uint32_t coord_id = GenUintCastCode(ref_inst->GetSingleWordInOperand(1), &builder); // If index id not yet set, binding is single descriptor, so set index to // constant 0. if (ref.desc_idx_id == 0) ref.desc_idx_id = builder.GetUintConstantId(0u); // Get texel buffer size. Instruction* size_inst = builder.AddUnaryOp(GetUintId(), spv::Op::OpImageQuerySize, ref.image_id); uint32_t size_id = size_inst->result_id(); // Generate runtime initialization/bounds test code with true branch // being full reference and false branch being debug output and zero // for the referenced value. Instruction* ult_inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpULessThan, coord_id, size_id); uint32_t error = (image_ty_inst->GetSingleWordInOperand(kSpvTypeImageSampled) == 2) ? kInstErrorBuffOOBStorageTexel : kInstErrorBuffOOBUniformTexel; uint32_t error_id = builder.GetUintConstantId(error); GenCheckCode(ult_inst->result_id(), error_id, coord_id, size_id, stage_idx, &ref, new_blocks); // Move original block's remaining code into remainder/merge block and add // to new blocks BasicBlock* back_blk_ptr = &*new_blocks->back(); MovePostludeCode(ref_block_itr, back_blk_ptr); } void InstBindlessCheckPass::InitializeInstBindlessCheck() { // Initialize base class InitializeInstrument(); // If runtime array length support or buffer bounds checking are enabled, // create variable mappings. Length support is always enabled if descriptor // init check is enabled. if (desc_idx_enabled_ || buffer_bounds_enabled_ || texel_buffer_enabled_) for (auto& anno : get_module()->annotations()) if (anno.opcode() == spv::Op::OpDecorate) { if (spv::Decoration(anno.GetSingleWordInOperand(1u)) == spv::Decoration::DescriptorSet) { var2desc_set_[anno.GetSingleWordInOperand(0u)] = anno.GetSingleWordInOperand(2u); } else if (spv::Decoration(anno.GetSingleWordInOperand(1u)) == spv::Decoration::Binding) { var2binding_[anno.GetSingleWordInOperand(0u)] = anno.GetSingleWordInOperand(2u); } } } Pass::Status InstBindlessCheckPass::ProcessImpl() { // Perform bindless bounds check on each entry point function in module InstProcessFunction pfn = [this](BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { return GenDescIdxCheckCode(ref_inst_itr, ref_block_itr, stage_idx, new_blocks); }; bool modified = InstProcessEntryPointCallTree(pfn); if (desc_init_enabled_ || buffer_bounds_enabled_) { // Perform descriptor initialization and/or buffer bounds check on each // entry point function in module pfn = [this](BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { return GenDescInitCheckCode(ref_inst_itr, ref_block_itr, stage_idx, new_blocks); }; modified |= InstProcessEntryPointCallTree(pfn); } if (texel_buffer_enabled_) { // Perform texel buffer bounds check on each entry point function in // module. Generate after descriptor bounds and initialization checks. pfn = [this](BasicBlock::iterator ref_inst_itr, UptrVectorIterator ref_block_itr, uint32_t stage_idx, std::vector>* new_blocks) { return GenTexBuffCheckCode(ref_inst_itr, ref_block_itr, stage_idx, new_blocks); }; modified |= InstProcessEntryPointCallTree(pfn); } return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange; } Pass::Status InstBindlessCheckPass::Process() { InitializeInstBindlessCheck(); return ProcessImpl(); } } // namespace opt } // namespace spvtools