SPIRV-Tools/source/fuzz/fuzzer_pass_outline_functions.cpp
Alastair Donaldson 9c4481419e
spirv-fuzz: Allow inapplicable transformations to be ignored (#4407)
spirv-fuzz features transformations that should be applicable by
construction. Assertions are used to detect when such transformations
turn out to be inapplicable. Failures of such assertions indicate bugs
in the fuzzer. However, when using the fuzzer at scale (e.g. in
ClusterFuzz) reports of these assertion failures create noise, and
cause the fuzzer to exit early. This change adds an option whereby
inapplicable transformations can be ignored. This reduces noise and
allows fuzzing to continue even when a transformation that should be
applicable but is not has been erroneously created.
2021-07-28 22:59:37 +01:00

196 lines
7.4 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_outline_functions.h"
#include <vector>
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_descriptor.h"
#include "source/fuzz/transformation_outline_function.h"
#include "source/fuzz/transformation_split_block.h"
namespace spvtools {
namespace fuzz {
FuzzerPassOutlineFunctions::FuzzerPassOutlineFunctions(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations,
bool ignore_inapplicable_transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations, ignore_inapplicable_transformations) {}
void FuzzerPassOutlineFunctions::Apply() {
std::vector<opt::Function*> original_functions;
for (auto& function : *GetIRContext()->module()) {
original_functions.push_back(&function);
}
for (auto& function : original_functions) {
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfOutliningFunction())) {
continue;
}
std::vector<opt::BasicBlock*> blocks;
for (auto& block : *function) {
blocks.push_back(&block);
}
auto entry_block = MaybeGetEntryBlockSuitableForOutlining(
blocks[GetFuzzerContext()->RandomIndex(blocks)]);
if (!entry_block) {
// The chosen block is not suitable to be the entry block of a region that
// will be outlined.
continue;
}
auto dominator_analysis = GetIRContext()->GetDominatorAnalysis(function);
auto postdominator_analysis =
GetIRContext()->GetPostDominatorAnalysis(function);
std::vector<opt::BasicBlock*> candidate_exit_blocks;
for (auto postdominates_entry_block = entry_block;
postdominates_entry_block != nullptr;
postdominates_entry_block = postdominator_analysis->ImmediateDominator(
postdominates_entry_block)) {
// Consider the block if it is dominated by the entry block, ignore it if
// it is a continue target.
if (dominator_analysis->Dominates(entry_block,
postdominates_entry_block) &&
!GetIRContext()->GetStructuredCFGAnalysis()->IsContinueBlock(
postdominates_entry_block->id())) {
candidate_exit_blocks.push_back(postdominates_entry_block);
}
}
if (candidate_exit_blocks.empty()) {
continue;
}
auto exit_block = MaybeGetExitBlockSuitableForOutlining(
candidate_exit_blocks[GetFuzzerContext()->RandomIndex(
candidate_exit_blocks)]);
if (!exit_block) {
// The block chosen is not suitable
continue;
}
auto region_blocks = TransformationOutlineFunction::GetRegionBlocks(
GetIRContext(), entry_block, exit_block);
std::map<uint32_t, uint32_t> input_id_to_fresh_id;
for (auto id : TransformationOutlineFunction::GetRegionInputIds(
GetIRContext(), region_blocks, exit_block)) {
input_id_to_fresh_id[id] = GetFuzzerContext()->GetFreshId();
}
std::map<uint32_t, uint32_t> output_id_to_fresh_id;
for (auto id : TransformationOutlineFunction::GetRegionOutputIds(
GetIRContext(), region_blocks, exit_block)) {
output_id_to_fresh_id[id] = GetFuzzerContext()->GetFreshId();
}
TransformationOutlineFunction transformation(
entry_block->id(), exit_block->id(),
/*new_function_struct_return_type_id*/
GetFuzzerContext()->GetFreshId(),
/*new_function_type_id*/ GetFuzzerContext()->GetFreshId(),
/*new_function_id*/ GetFuzzerContext()->GetFreshId(),
/*new_function_region_entry_block*/
GetFuzzerContext()->GetFreshId(),
/*new_caller_result_id*/ GetFuzzerContext()->GetFreshId(),
/*new_callee_result_id*/ GetFuzzerContext()->GetFreshId(),
/*input_id_to_fresh_id*/ input_id_to_fresh_id,
/*output_id_to_fresh_id*/ output_id_to_fresh_id);
MaybeApplyTransformation(transformation);
}
}
opt::BasicBlock*
FuzzerPassOutlineFunctions::MaybeGetEntryBlockSuitableForOutlining(
opt::BasicBlock* entry_block) {
// If the entry block is a loop header, we need to get or create its
// preheader and make it the entry block, if possible.
if (entry_block->IsLoopHeader()) {
auto predecessors =
GetIRContext()->cfg()->preds(entry_block->GetLabel()->result_id());
if (predecessors.size() < 2) {
// The header only has one predecessor (the back-edge block) and thus
// it is unreachable. The block cannot be adjusted to be suitable for
// outlining.
return nullptr;
}
// Get or create a suitable preheader and make it become the entry block.
entry_block =
GetOrCreateSimpleLoopPreheader(entry_block->GetLabel()->result_id());
}
assert(!entry_block->IsLoopHeader() &&
"The entry block cannot be a loop header at this point.");
// If the entry block starts with OpPhi or OpVariable, try to split it.
if (entry_block->begin()->opcode() == SpvOpPhi ||
entry_block->begin()->opcode() == SpvOpVariable) {
// Find the first non-OpPhi and non-OpVariable instruction.
auto non_phi_or_var_inst = &*entry_block->begin();
while (non_phi_or_var_inst->opcode() == SpvOpPhi ||
non_phi_or_var_inst->opcode() == SpvOpVariable) {
non_phi_or_var_inst = non_phi_or_var_inst->NextNode();
}
// Split the block.
uint32_t new_block_id = GetFuzzerContext()->GetFreshId();
ApplyTransformation(TransformationSplitBlock(
MakeInstructionDescriptor(GetIRContext(), non_phi_or_var_inst),
new_block_id));
// The new entry block is the newly-created block.
entry_block = &*entry_block->GetParent()->FindBlock(new_block_id);
}
return entry_block;
}
opt::BasicBlock*
FuzzerPassOutlineFunctions::MaybeGetExitBlockSuitableForOutlining(
opt::BasicBlock* exit_block) {
// The exit block must not be a continue target.
assert(!GetIRContext()->GetStructuredCFGAnalysis()->IsContinueBlock(
exit_block->id()) &&
"A candidate exit block cannot be a continue target.");
// If the exit block is a merge block, try to split it and return the second
// block in the pair as the exit block.
if (GetIRContext()->GetStructuredCFGAnalysis()->IsMergeBlock(
exit_block->id())) {
uint32_t new_block_id = GetFuzzerContext()->GetFreshId();
// Find the first non-OpPhi instruction, after which to split.
auto split_before = &*exit_block->begin();
while (split_before->opcode() == SpvOpPhi) {
split_before = split_before->NextNode();
}
if (!MaybeApplyTransformation(TransformationSplitBlock(
MakeInstructionDescriptor(GetIRContext(), split_before),
new_block_id))) {
return nullptr;
}
return &*exit_block->GetParent()->FindBlock(new_block_id);
}
return exit_block;
}
} // namespace fuzz
} // namespace spvtools